Journal d’Analyse Mathematique

, Volume 55, Issue 1, pp 1–16 | Cite as

On the extension of bimeasures

  • Shaul Karni
  • Ely Merzbach


We prove a necessary and sufficient condition for the existence of an extension of a scalar bimeasure on abstract sets to a Σ-additive measure on the generated Σ-algebra. We also prove some extension theorems for vector bimeasures.


Banach Space Measurable Space Additive Measure Vector Measure Extension Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Anantharaman,On exposed points of the range of a vector measure, inVector and Operator Valued Measure and Applications (D.H. Tucker and H.B. Maynard, eds.), Academic Pres, New York, 1973, pp. 7–22.Google Scholar
  2. 2.
    C. Berg, J. P. R. Christensen and P. Ressel,Harmonic Analysis on Semigroups, Springer-Verlag, New York, 1984.MATHGoogle Scholar
  3. 3.
    J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin, 1981.Google Scholar
  4. 4.
    J. Diestel and J. J. Uhl,Vector Measures, AMS, Providence, RI, 1977.MATHGoogle Scholar
  5. 5.
    N. Dinculeanu,Vector Measures, Deutscher Verlag der Weissenschaften, Berlin, 1966.MATHGoogle Scholar
  6. 6.
    N. Dunford and J. T. Schwartz,Linear Operators I, Interscience, New York, 1958.MATHGoogle Scholar
  7. 7.
    J. Horowitz,Une remarque sur les bimesures, Sem. de Prob. XI, Lecture Notes in Math. No. 581, Springer-Verlag, Berlin, 1977, pp. 59–64.Google Scholar
  8. 8.
    J. Horowitz,Measure-valued random processes, Z. Wahrschenlichkeitstheor. Verw. Geb.70 (1985), 213–236.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. E. Huneycutt,Extensions of abstract valued set functions, Trans. Am. Math. Soc.141 (1969), 505–513.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    I. Kluvanek,The extension and closure of vector measures, inVector and Operator Valued Measure and Applications, Academic Press, New York, 1973, pp. 175–186.Google Scholar
  11. 11.
    I. Kluvanek,Remarks on bimeasures, Proc. Am. Math. Soc.81 (1) (1981), 233–239.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Lindenstrauss and A. Pelczinski,Absolutely summing operators in L p-spaces and their applications, Studia Math.29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  13. 13.
    M. Métivier,Limites projectives de mesures, Ann. Mat. Pura Appl.63 (1963), 225–351.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Swartz,Absolutely summing and dominated operators on spaces of continuous functions, Trans. Am. Math. Soc.179b (1973), 123–131.CrossRefMathSciNetGoogle Scholar
  15. 15.
    K. Ylinen,On vector bimeasures, Ann. Mat. Pura Appl. (4)117 (1978), 115–135.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1990

Authors and Affiliations

  • Shaul Karni
    • 1
  • Ely Merzbach
    • 1
  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations