Advertisement

Biological Trace Element Research

, Volume 48, Issue 2, pp 141–160 | Cite as

Subcellular distribution of selenium during uptake and its influence on mitochondrial oxidations in germinatingVigna radiata L

  • Kumaraswamy Easwari
  • K. Lalitha
Original Articles

Abstract

The metabolic significance of Se in plants is not well documented, though the presence of many selenoenzymes in bacteria and the essentiality of Se in higher animals is established. Since germination is an active process in plant growth and metabolism, the effect of Se was investigated in germinatingVigna radiata L, a nonaccumulating Sedeficient legume. Growth and protein were enhanced in seedlings supplemented with selenium (Se) as sodium selenite in the medium up to 1 μg/mL. The pattern of uptake of75Se in the differentiating tissues and the subcellular distribution were investigated. The percentage of incorporation of75Se was greater in the mitochondria at the lowest level (0.5 μg/mL) of Se supplementation compared to higher levels of Se exposure. Proteins precipitated from the postmitochondrial supernatant fractions, when separated by means of polyacrylamide gel electrophoresis (PAGE), indicated a major selenoprotein in the seedlings germinated at 2.0 μg/mL Se. In seedlings grown with supplemented Se, enhanced respiratory control ratio and succinate dehydrogenase activity were observed in the mitochondria of tissues, indicative of a role for Se in mitochondrial membrane functions.

Index Entries

Selenium, uptake during germination, in germinatingV. radiata, tissue and subcellular distribution, mitochondrial oxidations Plant mitochondria,V. radiata, germination,75Se uptake, oxygen uptake, succinate dehydrogenase 

Abbreviations

TEMED

N,N,N’,N’-Tetramethyl-ethylenediamine

DCPIP

2,6-dichlorophenolindophenol

PMS

phenazinemethosulfate

DTNB

5-5’-dithio-bis (2-nitrobenzoic acid)

RCR

respiratory control ratio

SDH

succinate dehydrogenase

GSH-Px

glutathione peroxidase

PVP

polyvinyl pyrrolidone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Schwarz and C. M. Foltz,J. Am. Chem. Soc. 79, 3292 (1957).CrossRefGoogle Scholar
  2. 2.
    P. D. Whanger, P. H. Weswig, J. A. Schmitz, and J. E. Oldfield,J. Nutr. 107, 1298 (1977).PubMedGoogle Scholar
  3. 3.
    G. N. Schrauzer, D. A. White, and C. J. Schneider,Bioinorg. Chem. 7, 23 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    T. C. Stadtman,Annu. Rev. Biochem. 59, 111 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. Hoekstra,Science. 179, 588 (1973).PubMedCrossRefGoogle Scholar
  6. 6.
    O. A. Levander, V. C. Morris, and D. J. Higgs,Biochem. Biophys. Res. Commun. 58, 1047 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Smith and A. Shrift,Comp. Biochem. Physiol. 63B, 39 (1978).Google Scholar
  8. 8.
    D. Behne, S. Scheid, A. Kyriakopoulos, and H. Hilmert,Biochim. Biophys. Acta 1033, 219 (1990).PubMedGoogle Scholar
  9. 9.
    R. A. Sunde,JAOCS 61, 1891 (1984).CrossRefGoogle Scholar
  10. 10.
    A. Bock, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, and F. Zinont,Mol. Microbiol. 5, 515 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Hatfield, I. S. Choi, S. Mischke, and L. D. Owens,Biochem. Biophys. Res. Commun. 184, 254 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    J. W. Anderson and A. R. Scarf, inMetals and Micronutrients: Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpoint, eds., Academic, New York, 1983, pp. 242–275.Google Scholar
  13. 13.
    R. L. Mikkelsen, A. L. Page, and F. T. Bingham, inFactors Affecting Se Accumulation by Agricultural Crops. SSSA Spec Publ,23 (Selenium Agric. Environ.), 1989, pp. 65–94 (CA Abs No. 133116z, Vol 111, 1989).Google Scholar
  14. 14.
    G. S. Banuelos, G. E. Cardon, C. J. Phene, L. Wu, S. Akohoue, and S. Zambrzuski,Plant Soil 148, 253 (1993).CrossRefGoogle Scholar
  15. 15.
    C. Shand, G. Coults, E. Duff, and D. Atkinson,J. Sci. Food Agric. 59, 27 (1992).CrossRefGoogle Scholar
  16. 16.
    M. Rutzke, W. H. Gutenmann, S. D. Williams, and D. J. Lisk,Bull. Environ. Contam. Toxicol. 51, 416 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    G. S. Banuelos, R. Mead, and G. J. Hoffman,Agric. Ecosyst. Environ. 43, 119 (1993).CrossRefGoogle Scholar
  18. 18.
    H. F. Wan, R. L. Mikkelsen, and A. L. Page,J. Environ. Qual. 17, 269 (1988).CrossRefGoogle Scholar
  19. 19.
    M. P. Arvy,Plant Soil. 117, 29 (1989).CrossRefGoogle Scholar
  20. 20.
    C. Shennan, D. P. Schactman, and G. R. Gamer,New Phytol. 115, 523 (1990).CrossRefGoogle Scholar
  21. 21.
    J. L. Martin, A. Shrift, and M. L. Gerlach,Phytochemistry 10, 945 (1971).CrossRefGoogle Scholar
  22. 22.
    P. J. Peterson and G. W. Butler,Aust. J. Biol. Sci. 15, 126 (1962).Google Scholar
  23. 23.
    T. A. Brown and A. Shrift,Plant Physiol. 66, 758 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    S. K. Sathe, A. C. Mason, and C. M. Weaver,J. Agric. Food Chem. 40, 2077 (1992).CrossRefGoogle Scholar
  25. 25.
    P. F. Bell, D. R. Parker, and A. L. Page,Soil. Sci. Soc. Am. J. 56, 1818 (1992).CrossRefGoogle Scholar
  26. 26.
    O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  27. 27.
    G. L. Ellman,Arch. Biochem. Biophys. 82, 70 (1959).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Ihnat,JAOAC 57, 368 (1974).Google Scholar
  29. 29.
    J. A. Fiorino, J. W. Jones, and S. G. Capar,Anal. Chem. 48, 120 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    A. T. Diplock, C. P. J. Caygill, E. H. Jeffery, and C. Thomas,Biochem. J. 134, 283 (1973).PubMedGoogle Scholar
  31. 31.
    W. D. Bonner Jr., inMethods in Enzymology, vol. 10, R. W. Estabrook and M. E. Pullman, eds., Academic, New York, 1967, pp. 126–133.Google Scholar
  32. 32.
    B. D. Hames, inGel Electrophoresis of Proteins. A Practical Approach, 2nd ed., B. D. Hames and D. Rickwood, eds., Oxford University Press, 1990, pp. 1–47.Google Scholar
  33. 33.
    H. Ikuma and W. D. Bonner Jr.,Plant Physiol. 42, 67 (1967).PubMedGoogle Scholar
  34. 34.
    B. Chance and G. R. Williams,Nature 175, 1120 (1955).PubMedCrossRefGoogle Scholar
  35. 35.
    E. C. Slater and W. D. Bonner Jr.,Biochem. J. 52, 185 (1952).PubMedGoogle Scholar
  36. 36.
    Y. Hatefi, inMethods in Enzymology, vol. 53, S. Fleischer and L. Packer, eds., Academic, New York, 1978, pp. 27–35.Google Scholar
  37. 37.
    W. D. Bonner Jr., inMethods in Enzymology, vol. 1, S. P. Kolowick and N. O. Kaplan, eds., Academic, New York, 1955, pp. 722–727.CrossRefGoogle Scholar
  38. 38.
    P. A. Altman and D. S. Dittmer, inBiology Data Book, 2nd ed., vol. 1, 1972, pp. 399–412.Google Scholar
  39. 39.
    K. Easwari and K. Lalitha, inAdvances in Plant Biotechnology and Biochemistry, M. L. Lodha, S. L. Mehta, S. Ramagopal, and G. P. Srivastava, eds., Indian Soc. Agril. Biochemists, Kanpur, India, pp. 143–147.Google Scholar
  40. 40.
    H. E. Ganther and C. Concoran,Biochemistry 8, 2557 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Rennenberg,Phytochemistry 21, 2771 (1982).CrossRefGoogle Scholar
  42. 42.
    R. J. Shamberger, inBiochemistry of Selenium, E. Frieden, ed., Plenum, New York, 1983, pp. 167–183.Google Scholar
  43. 43.
    J. A. Fee and G. Palmer,Biochim. Biophys. Acta 245, 175 (1971).PubMedCrossRefGoogle Scholar
  44. 44.
    N. Vasanthy, PhD thesis, 1986, Indian Institute of Technology, Madras, India.Google Scholar
  45. 45.
    S. A. Hill, C. P. L. Grof, J. H. Bryce, and C. J. Leaver,Plant Physiol. 99, 60 (1992).PubMedCrossRefGoogle Scholar
  46. 46.
    D. A. Day, A. L. Moore, I. B. Dry, J. T. Wiskich, and J. Azcon-Bieto,Plant Physiol. 86, 1199 (1988).PubMedGoogle Scholar
  47. 47.
    W. D. Bonner, Jr. and D. O. Voss,Nature 191, 682 (1961).CrossRefGoogle Scholar
  48. 48.
    J. R. Wiskich and W. D. Bonner, Jr.,Plant Physiol. 38, 594 (1963).PubMedGoogle Scholar
  49. 49.
    J. J. Burke, J. N. Siedow, and D. E. Moreland,Plant Physiol. 70, 1577 (1982).PubMedGoogle Scholar
  50. 50.
    T. Hattori and T. Asahi,Plant and Cell Physiol. 23, 515 (1982).Google Scholar
  51. 51.
    T. Ohnishi, J. C. Salerno, D. B. Winter, J. Lim, C. A. Yu, L. Yu, and T. E. King,J. Biol. Chem. 251, 2105 (1976).PubMedGoogle Scholar
  52. 52.
    G. Oestreicher, P. Hogue, and T. P. Singer,Plant Physiol. 52, 622 (1973).PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Kumaraswamy Easwari
    • 1
  • K. Lalitha
    • 1
  1. 1.Department of Chemistry, HSB 264Indian Institute of TechnologyMadrasIndia

Personalised recommendations