Molecular Biotechnology

, Volume 11, Issue 1, pp 27–35 | Cite as

Use of a short A/T-rich cassette for enhanced expression of cloned genes inEscherichia coli

  • Darrell H. Mallonee
  • Phillip B. Hylemon


A short (43-bp) A/T-rich stretch of DNA located in The intergenic region between thebaiA2 andbaiF genes fromEubacterium sp. strain VPI 12708 was amplified by polymerase chain reaction (PCR) and inserted in front of the Shine-Dalgarno (SD) sequences of three inefficiently-expressedEubacterium sp. strain VPI 12708 genes cloned inEschcrichia coli plasmids. Insertion of this A/T-rich cassette increased gene expression in all cases tested. Deletion of part of the A/T-rich region from abaiF clone in pUC19 resulted in decreased gene expression. Synthesis of specific mRNA was increased with addition of the A/T-rich cassette to constructs containing thebaiC gene from Eubacterium sp. strain VPI 12708, but mRNA synthesis was not significantly changed in cells containing plasmid constructs with thebaiF andbaiG genes. Enhanced translation resulting from a decrease in mRNA secondary structure in the ribosome binding site region is discussed as a possible reason for increased gene expression with the A/T-rich cassette.

Index Entries

Eubacterium sp translation E. coli cloning protein expression expression vectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brosius, J. (1988) Expression vectors employing lambda-,trp-, lac-, andlpp-derived promoters, inVectors: a Survey of Molecular Cloning Vectors and Their Uses (Rodriquez, R. L. and Denhardt, D. T., eds.), Butterworths, Boston, pp. 205–226.Google Scholar
  2. 2.
    Gralla, J. D. (1991) Promoter recognition and mRNA initiation byEscherichia coli Es70.Methods Enzymol. 185, 37–53.Google Scholar
  3. 3.
    Yansura, D. G. and Henner, D. J. (1991) Use ofEscherichia coli trp promoter for direct expression of proteins.Methods Enzymol. 185, 54–59.Google Scholar
  4. 4.
    Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes.Methods Enzymol. 185, 60–89.PubMedGoogle Scholar
  5. 5.
    Marston, F. A. O. (1986) The purification of eukaryotic polypeptides synthesized inEscherichia coli.Biochem. J. 240, 1–12.PubMedGoogle Scholar
  6. 6.
    Uhlén, M. and Moks, T. (1991) Gene fusions for purpose of expression: an introduction.Methods Enzymol. 185, 129–143.Google Scholar
  7. 7.
    Coleman, J. P., White, W. B., Lijewski, M., and Hylemon, P. B. (1988) Nucleotide sequence and regulation of a gene involved in bile acid 7-dehydroxylation byEubacterium sp. strain VPI 12708.J. Bacteriol. 170, 2070–2077.PubMedGoogle Scholar
  8. 8.
    White, W. B., Coleman, J. P., and Hylemon, P. B. (1988) Molecular cloning of a gene encoding a 45,000-dalton polypeptide associated with bile acid 7-dehydroxylation inEubacterium sp. strain VPI 12708.J. Bacteriol. 170, 611–616.PubMedGoogle Scholar
  9. 9.
    Mallonee, D. H., White, W. B., and Hylemon, P. B. (1990) Cloning and sequencing of a bile acid-inducible operon fromEubacterium sp. strain VPI 12708.J. Bacteriol. 172, 7011–7019PubMedGoogle Scholar
  10. 10.
    Mallonee, D. H., Adams, J. L., and Hylemon P. B. (1992) The bile acid-induciblebaiB gene fromEubacterium sp. strain VPI 12708 encodes a bile acidcoenzyme A ligase.J. Bacteriol. 174, 2065–2071.PubMedGoogle Scholar
  11. 11.
    Mallonee, D. H., Lijewski, M. A., and Hylemon, P. B. (1995) Expression inEscherichia coli and characterization of a bile acid-inducible 3α-hydroxysteroid dehydrogenase fromEubacterium sp. strain VPI 12708.Curr. Microbiol. 30, 259–263.PubMedCrossRefGoogle Scholar
  12. 12.
    Dawson, J. A., Mallonee, D. H., Björkhem, I., and Hylemon, P. B. (1996) Expression and characterization of a C24 bile acid 7α-dehydratase fromEubacterium sp. strain VPI 12708 inEscherichia coli.J. Lipid Res. 37, 1258–1267.PubMedGoogle Scholar
  13. 13.
    Mallonee, D. H. and Hylemon, P. B. (1996) Sequencing and expression of a gene encoding a bile acid transporter fromEubacterium sp. strain VPI 12708.J. Bacteriol. 178, 7053–7058.PubMedGoogle Scholar
  14. 14.
    Roberts, I., Hylemon, P. B., and Holmes, W. M. (1991) Rapid method for altering bacterial ribosome-binding sequences for overexpression of proteins inEscherichia coli.Protein Exp. Purification 2, 117–121.CrossRefGoogle Scholar
  15. 15.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  16. 16.
    Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., etal. (eds.) (1987)Current Protocols in Molecular Biology. John Wiley, New York.Google Scholar
  17. 17.
    Tessier, L.-H., Sondermeyer, P., Faure, T., Dreyer, D., Benavente, A., Villeval, D., et al. (1984) The influence of mRNA primary and secondary structure on human IFN-γ gene expression inE. coli.Nucleic Acids. Res. 12, 7663–7675.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanssens, P., Remaut, E., and Fiers, W. (1985) Alterations upstream from the Shine-Dalgarno region and their effect on bacterial gene expression.Gene 36, 211–223.PubMedCrossRefGoogle Scholar
  19. 19.
    DeLamarter, J. F., Mermod, J.-J., Liang, C.-M., Eliason, J.F., and Thatcher, D. R. (1985) Recombinant murine GM-CSF fromE. coli has biological activity and is neutralized by a specific antiserum.EMBO J. 4, 2575–2581.PubMedGoogle Scholar
  20. 20.
    Schoner, B. E., Belagaje, R. M., and Schoner, R. G. (1986) Translation of a synthetic two-cistron mRNA inEscherichia coli.Proc. Natl. Acad. Sci. USA 83, 8506–8510.PubMedCrossRefGoogle Scholar
  21. 21.
    Looman, A. C., Bodlaender, J., de Gruyter, Vogelaar, A., and van Knippenberg, P. H. (1986) Secondary structure as primary determinant of the efficiency of ribosomal binding sites inEscherichia coli.Nucleic Acids Res. 14, 5481–5497.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee, N., Zhang, S.-Q., Cozzitorto, J., Yang, J.-S., and Testa, D. (1987) Modification of mRNA secondary structure and alteration of the expression of human interferon α1 inEscherichia coli.Gene 58, 77–86.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, H., Pomeroy-Cloney, L., Bjerknes, M., Tam, J., and Jay, E. (1994) The influence of adenine-rich motifs in the 3′ portion of the ribosome binding site on human IFN-γene expression inEscherichia coli.J. Mol. Biol. 240, 20–27.PubMedCrossRefGoogle Scholar
  24. 24.
    Birikh, K. R., Lebedenko, E. N., Boni, I. V., and Berlin, Y. A. (1995) A high-level prokaryotic expression system: synthesis of human interleukin la and its receptor antagonist.Gene 164, 341–345.PubMedCrossRefGoogle Scholar
  25. 25.
    Gold, L. and Stormo, G. D. (1991) High-level translation initiation.Methods Enzymol. 185, 89–93.CrossRefGoogle Scholar
  26. 26.
    McCarthy, J. E. G. and Brimacombe, R. (1994) Prokaryotic translation: the interactive pathway leading to initiation.Trends Genet. 10, 402–407PubMedCrossRefGoogle Scholar
  27. 27.
    Olins, P. O. and Rangwala, S. H. (1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of thelacZ gene inEscherichia coli.J. Biol. Chem. 264, 16973–16976.PubMedGoogle Scholar
  28. 28.
    McCarthy, J. E. G., Schairer, H. U., and Sebald, W. (1985) Translational initiation frequency ofatp genes fromEscherichia coli: identification of an intercistronic sequence that enhances translation.EMBO J.4, 519–526.PubMedGoogle Scholar
  29. 29.
    Stanssens, P., Remaut, E., and Fiers, W. (1986) Inefficient translation initiation causes premature transcription termination in thelacZ gene.Cell 44, 711–718.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Darrell H. Mallonee
    • 1
  • Phillip B. Hylemon
    • 1
  1. 1.Department of Microbiology and ImmunologyMedical College of Virginia, Virginia Commonwealth UniversityRichmond

Personalised recommendations