Biological Trace Element Research

, Volume 65, Issue 3, pp 271–281 | Cite as

Alterations of serum selenium, zinc, copper, and iron concentrations and some related antioxidant enzyme activities in patients with cutaneous leishmaniasis

  • Abdurrahim Kocyigit
  • Ozcan Erel
  • Mehmet S. Gurel
  • Senel Avci
  • Necmeddim Aktepe
Original Articles


The aim of this study was to measure the alterations in serum selenium (Se), copper (Cu), zinc (Zn), and iron (Fe) concentrations and their carrier proteins, ceruloplasmin (Cp), transferrin (Tf) albumin, and related antioxidant enzyme activities, erythrocyte Cu-Zn Superoxide dismutase (Cu-Zn SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in patients with cutaneous leishmaniasis (CL). Erythrocyte Cu-Zn SOD activities, serum Cu concentrations, and Cp levels were found to be significantly higher in the patients group than those of controls. However, GSH-Px and CAT activities and Se, Zn, Fe, and Tf levels were lower in patients than in the control subjects. There were positive important correlation’s between Cu-Zn SOD and Cp, Cu-Zn SOD and Cu, Cp and Cu, GSH-Px and Se, and Fe and CAT in the patients group. Our results showed that serum essential trace elements Se, Zn, Cu, and Fe concentrations and their related enzymes Cu-Zn SOD, GSH-Px, and CAT activities change in CL patients. The changes may be a part of defense strategies of organism and are induced by the hormonelike substances.

Index Entries

Cutaneous leishmaniasis glutathione peroxidase Cu-Zn Superoxide dismutase catalase selenium zinc copper iron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Berman, D. Waddel, and B. D. Hansoni, Biochemical mechanisms of the antileishmanial activity of sodium stibagluconate,Antimicrob. Agents Chemother. 27(6), 916–920 (1985).PubMedGoogle Scholar
  2. 2.
    Y. Dowtlati, Cutaneous leishmaniasis,Int. J. Dermatol. 18, 362–368 (1975).Google Scholar
  3. 3.
    A. J. Mastousek, J. L. Burguera, M. Burguera, and N. Anez, Changes in total content of iron, copper and zinc in serum, heart, liver, spleen and skeletal muscle tissues of rats infected withTrypanosome Cruzi, Biol. Trace Element Res. 37, 51–69 (1993).CrossRefGoogle Scholar
  4. 4.
    E. F. Barber and R. J. Cousins, Interleukin-1. Stimulated induction of ceruloplasmin synthesis in normal and copper-deficient rats,J. Nutr. 118, 375–381 (1988).PubMedGoogle Scholar
  5. 5.
    R. J. Cousins, Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin,Physiol. Rev. 65, 238 (1985).PubMedGoogle Scholar
  6. 6.
    K. C. Klassing, Nutritional aspects of leukocytic cytokins,J. Nutr. 118, 1435–1443 (1988).Google Scholar
  7. 7.
    B. M. Drowkin, Se deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS),Chem. Biol. Interact. 91, 181–186 (1994).CrossRefGoogle Scholar
  8. 8.
    J. Assruey, F. Q. Cunha, and M. Epperlein, Production of nitric oxide and Superoxide by activated macrophages and killing ofLeishmania major, Eur. J. Immunol. 24, 672–676 (1994).CrossRefGoogle Scholar
  9. 9.
    C. G. Haidaris and P. F. Bonventre, A role for oxygen-dependent mechanisms in killing ofLeishmania Donovani tissue forms by activated macrophages,J. Immunol. 129, 805–855 (1982).Google Scholar
  10. 10.
    H. M. Dockrell and J. H. L. Playfair, Killing ofPlasmodium Yoelii by enzyme-induced products of the oxidative burst,Infect. Immunol. 43, 451–456 (1984).Google Scholar
  11. 11.
    M. Panemangalore and F. N. Bebe, Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte Superoxide dismutase activities in copper-depleted and repleted rats,Biol. Trace Element Res. 55, 111–126 (1996).CrossRefGoogle Scholar
  12. 12.
    C. P. Sodhi, R. Katyal, S. V. Rana, S. Attri, and V. Singh, Study of oxidative-stress in rotavirus infected infant mice,Indian J. Med. Res. 104, 245–249 (1996).PubMedGoogle Scholar
  13. 13.
    Y Kono and I. Fridowich, Superoxide radical inhibits catalase,J. Biol. Chem. 257, 5751–5755 (1982).PubMedGoogle Scholar
  14. 14.
    V. Korunova, Z. Skodova, J. Dedina, Z. Valenta, Serum Se in adult Czechoslovak (Central Bohemia) population,Biol. Trace Element Res. 37, 91–99 (1993).Google Scholar
  15. 15.
    F. W. Sunderman and S. Nomoto, Measurement of human serum ceruloplasmin by its p-phenylene-diamine oxidase activity,Clin. Chem. 16, 903–910 (1970).PubMedGoogle Scholar
  16. 16.
    D. E. Palgia and W. N. Valentine, Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase,J. Lab. Clin. Med. 70, 158–159 (1967).Google Scholar
  17. 17.
    J. M. McCord and I. Fridovich, Superoxide dismutase, an enzymatic function for erythrocuprein (hemocuprein),J. Biol. Chem. 244, 6049–6055 (1969).PubMedGoogle Scholar
  18. 18.
    M. C. M. Mateo, B. Martin, M. S. Benert, and J. Rabadan, Catalase activity in erythrocytes from colon and gastric cancer patient. Influence of nickel lead mercury and cadmium,Biol. Trace Element Res. 57, 79–90 (1997).Google Scholar
  19. 19.
    M. C. Powanda and W. R. Biesel, Hypothesis: Leukocyte endogenous mediator/endogenous pyrogen/lymphocyte-activating factor modulates the development of nonspecific and specific immunity and affects nutritional status,Am. J. Clin. Nutr. 35, 23–29 (1982).Google Scholar
  20. 20.
    K. L. G. Svenson, R. Hallgren, E. Johansson, and U. Lindh, Reduced zinc in peripheral blood cells from patients with inflammatory connective tissue disease,Inflammation 9(2), 189–199 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    A. M. Rofe, J. C. Philcox, and P. Coyle, Trace metal, acute phase and metabolic response to endotoxin in metallothionein-null mice,Biochem. J. 314, 793–797 (1996).PubMedGoogle Scholar
  22. 22.
    B. Adamik and A. Wlaszczyk, Lactoferrin—Its role in defense against infection and immunotropic properties,Postepy Higieny Meddycyny Doswiadczalnej 50(1), 33–41 (1996).Google Scholar
  23. 23.
    S. Kent, E. D. Weinberg, and P. Stuart-Macadam, The etiology of the anemia of chronic disease and infection,J. Clin. Epidemiol. 47(1), 23–33 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    K. C. Klassing, D. E. Laurin, R. K. Penk, and D. M. Fry, Immunological mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1,J. Nutr. 117, 1629–1637 (1987).Google Scholar
  25. 25.
    C. Pirmez, M. Yamamura, K. Uyemura, M. P. Oliveira, and F. C. Silva, Cytokine patterns in the pathogenesis of human leishmaniasis,J. Clin. Invest. 91, 1390–1395 (1993).PubMedGoogle Scholar
  26. 26.
    H. M. Wagner, H. U. Buesher, M. Rollinghoff, and W. Solbach, Interferon-gamma inhibits the efficacy of interleukin-1 to generate a Th2-cell based immune response induced byLeishmania major, Immunobiology 182(3-4), 292–306 (1991).PubMedGoogle Scholar
  27. 27.
    E. Cillarie, M. Dieli, E. Maltese, S. Milano, A. Salerno, and E. Y. Liew, Enhancement of macrophage IL-1 production byLeishmania major infection in vitro and its inhibition by IFN-γ,J. Immunol. 143(6), 2001–2005 (1989).Google Scholar
  28. 28.
    F. Y. Liew, C. Parkinson, S. Millott, A. Severn, and M. J. Carrier, Tumor necrosis factor (TNF-α) in leishmaniasis. I. TNF-α mediates host-protection against cutaneous leishmaniasis,Immunology 69, 570–573 (1990).PubMedGoogle Scholar
  29. 29.
    F. Y. Liew, S. Millott, C. Parkinson, R. M. J. Palmer, and S. Monada, Macrophage killing of leishmania parasite in vivo is mediated by nitric oxide from L-arginine,J. Immunol. 144, 4794–4797 (1990).PubMedGoogle Scholar
  30. 30.
    N. E. Reiner, Parasite accessory cell interaction in murine leishmaniasis I. Evasion and stimulus-dependent suppression of the macrophage interleukin-1 response byLeishmania Donovani, J. Immunol. 138, 1919–1925 (1987).PubMedGoogle Scholar
  31. 31.
    T. Biswas, D. K. Ghosh, N. Mukherjee, and J. Ghosal, Lipid peroxidation of erythrocytes in visceral leishmaniasis,J. Parasitol. 83(1), 151–152 (1997).PubMedCrossRefGoogle Scholar
  32. 32.
    B. M. Drowkin, Se deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS),Chem. Biol. Interact. 91, 181–186 (1994).CrossRefGoogle Scholar
  33. 33.
    L. Olmsted, G. N. Schrauzer, M. Flores-Arce, and J. Dowd, Se supplementation of symptomatic human immunodeficiency virus infected patients,Biol. Trace Element Res. 20, 59–65 (1989).Google Scholar
  34. 34.
    K. N. Apelgren, J. L. Rombeau, P. L. Twomey, and R. A. Miller, Comparison of nutritional indices and outcome in critically ill patients,Crit. Care. Med. 10, 305–312 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    H. P. A. Hughes, Oxidative killing of intracellular parasites mediated by macrophages,Parasitol. Today 4, 340–347 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    C. F. Ockenhouse and H. L. Shear, Oxidative killing of the intraerytrocytic malaria parasitePlasmodium Yoelii by activated macrophages,J. Immunol. 132, 424–432 (1984).PubMedGoogle Scholar
  37. 37.
    R. F. Burk, Biological activity in selenium,Annu. Rev. Nutr. 3, 53–70 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Niwa, O. Lizawa, K. Ishimato, H. Akamatsu, and T. Kanoh, Age-dependent basal level and induction capacity of Cu-Zn and Mn Superoxide dismutase and other scavenging enzyme activities in leukocytes from young and elderly adults,Am. J. Pathol. 143(1), 312–320 (1993).PubMedGoogle Scholar
  39. 39.
    R. A. Disilvestro, E. A. David, and C. Collignon, Interleukin-1 slowly increases lung fibroblast Cu-Zn Superoxide dismutase activity levels,Proc. Soc. Exp. Biol. Med. 197, 197–200 (1991).PubMedGoogle Scholar
  40. 40.
    M. Rister and R. Baehner, Alteration of Superoxide dismutase, catalase, glutathione peroxidase and NADPH (H) cytocrome C reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia,J. Clin. Invest. 58, 1174–1184 (1976).PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Abdurrahim Kocyigit
    • 1
  • Ozcan Erel
    • 1
  • Mehmet S. Gurel
    • 2
  • Senel Avci
    • 1
  • Necmeddim Aktepe
    • 1
  1. 1.Department of Biochemistry, Faculty of MedicineHarran UniversitySanliurfaTurkey
  2. 2.Department of Dermatology, Faculty of MedicineHarran UniversitySanliurfaTurkey

Personalised recommendations