Skip to main content
Log in

Sur les fonctions harmoniques bornées sur les groupes de Lie résolubles connexes et l'existence de mesure invariante

  • Published:
Journal d’Analyse Mathematique Aims and scope

Abstract

LetG be a connected solvable Lie group with abelian derived group and μ a Borel measure onG. We define the μ-harmonic functions as the bounded Borel measurable solutions of the equation:h(g)=∫ G h(gy)μ(dy). We prove that if μ is a spread-out measure, bounded μ-harmonic functions are given by a Poisson formula, where the Poisson boundary is characterized in terms of the asymptotic behaviour of the right random walk of law μ onG. Moreover, we give a complete description of the Poisson boundary for certain groups. The Poisson formula remains essentially valid for adapted μ and left uniformly continuous bounded harmonic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Références

  • [AM] L. Auslander et C. C. Moore,Unitary representations of solvable Lie Groups, Mem. Amer. Math. Soc. no 62, 1966.

  • [Az] R. Azencott,Espaces de Poisson des groupes localement compacts, Lecture Notes in Math.148, Springer, Berlin, 1970.

    MATH  Google Scholar 

  • [BoP] P. Bougerol et N. Picard,Strict stationarity of generalized autoregressive process, Ann. Probab.20 (1992), 1714–1730.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bou2] N. BourbakiEléments de mathématiques. Groupes et algèbres de Lie, chap. VII et VIII, Hermann, Paris, 1975.

    Google Scholar 

  • [Br] S. Brofferio,How a centered random walk on the affine group goes to infinity, Ann. Inst. H. Poincaré Probab. Statist.39 (2003), 371–384.

    Article  MATH  MathSciNet  Google Scholar 

  • [C] C. Chevalley,Théorie des groupes de Lie, Hermann, Paris, 1968.

    MATH  Google Scholar 

  • [ChD] G. Choquet et J. Deny,Sur l'équation de convolution μ=μ*σ, C. R. Acad. Sci. Paris, Sér. I250 (1960), 799–801.

    MATH  MathSciNet  Google Scholar 

  • [CoW] A. Connes et E. J. Woods,Approximately transitive flows and ITPFI factors, Ergodic Theory Dynam. Systems5 (1985), 203–236.

    MATH  MathSciNet  Google Scholar 

  • [Cu1] C. Cuny,Fonctions harmoniques bornées sur les groupes de Lie, marches aléatoires et problèmes connexes, Thèse de l'université de Rennes 1, 2000.

  • [E] L. Elie,Noyaux potentiels associés aux marches aléatoires sur les espaces homogène. Quelques exemples clefs dont le groupe affine, inThéorie du potentiel, Lecture Notes in Math.1096, Springer, Berlin, 1984, pp. 223–260.

    Chapter  Google Scholar 

  • [Er] K. B. EricksonThe strong law of large number when the mean is undefined, Trans. Amer. Math. Soc.185 (1973), 371–381.

    Article  MathSciNet  Google Scholar 

  • [F] J. M. G. Fell,A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc.13 (1962), 472–476.

    Article  MATH  MathSciNet  Google Scholar 

  • [Fu] H. Furstenberg,A Poisson formula for semi-simple Lie groups, Ann. of Math. (2)77 (1963), 335–386.

    Article  MathSciNet  Google Scholar 

  • [G] A. Garsia,A simple proof of Eberhard Hopf's maximal ergodic theorem, J. Math. Mech.14 (1965), 381–382.

    MATH  MathSciNet  Google Scholar 

  • [GoMa] C. M. Goldie et R. A. Maller,Stability of perpetuities, Ann. Probab.28 (2000), 195–218.

    MathSciNet  Google Scholar 

  • [Gu] Y. Guivarc'h,Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France101 (1973), 333–379.

    MATH  MathSciNet  Google Scholar 

  • [GuR] Y. Guivarc'h et A. Raugi,Frontières de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete69 (1985), 187–242.

    Article  MATH  MathSciNet  Google Scholar 

  • [Gr] A. Grincevičius,A random difference equation, Lithuanian Math. J.21 (1981), 57–64.

    MATH  Google Scholar 

  • [HRo] E. Hewitt et K. A. Ross,Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin 1963.

    MATH  Google Scholar 

  • [J1] W. Jaworski,Poisson and Furstenberg boundary of random walks, C. R. Math. Acad. Sci. Canada13 (1991), 279–284.

    MATH  MathSciNet  Google Scholar 

  • [J2] W. Jaworski,Strongly aproximately transitive group actions, the Choquet-Deny theorem and polynomial growth, Pacific J. Math.165 (1994), 115–129.

    MATH  MathSciNet  Google Scholar 

  • [J3] W. Jaworski,A Poisson formula for solvable Lie groups, J. Analyse Math.68 (1996), 183–208.

    Article  MATH  MathSciNet  Google Scholar 

  • [J4] W. Jaworski,Random walks on almost connected locally compact groups: Boundary and convergence. J. Analyse Math.74 (1998), 235–273.

    MATH  MathSciNet  Google Scholar 

  • [K] H. Kesten,The limit points of a normalized random walk, Ann. Math. Statist.48 (1970), 1173–1205.

    Article  MathSciNet  Google Scholar 

  • [N] J. Neveu,Bases mathématiques du Calcul des Probabilités, Masson, Paris, 1964.

    MATH  Google Scholar 

  • [R1] A. Raugi,Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Bull. Soc. Math. France, mémoire 54 (1977), 5–118.

    MATH  MathSciNet  Google Scholar 

  • [R2] A. Raugi,Périodes des fonctions harmoniques bornées, Séminaires de Rennes, 1978.

  • [R3] A. Raugi,Fonctions harmoniques positives sur certains groupes de Lie résolubles connexes, Bull. Soc. Math. France124 (1996), 649–684.

    MATH  MathSciNet  Google Scholar 

  • [R4] A. Raugi,A general Choquet-Deny theorem for nilpotent groups, Ann. Inst. H. Poincaré, to appear.

  • [V] V. S. VaradarajanLie Groups Lie Algebras and their Representations, Springer-Verlag, Berlin, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Cuny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuny, C. Sur les fonctions harmoniques bornées sur les groupes de Lie résolubles connexes et l'existence de mesure invariante. J. Anal. Math. 94, 91–124 (2004). https://doi.org/10.1007/BF02789043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789043

Navigation