Skip to main content
Log in

Incorporation of3H-thymidine into DNA and the activity of alkaline phosphatase in zinc-deficient fetal rat brains

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The incorporation of3H-thymidine into DNA in the brains of the 17-day and 20-day old rat fetuses was significantly reduced by maternal zinc restriction during pregnancy. The activity of the enzyme thymidine kinase (EC 2.7.1.21) was similarly reduced in the zine-deprived fetal brains on days 14 and 20 of gestation, but not on day 17. Fetal brain alkaline phosphatase (EC 3.1.3.1) was significantly depressed by maternal zinc deprivation on days 17 and 20 of pregnancy.

The data suggest an association between thymidine kinase and the reduced incorporation of3H-thymidine into DNA in the brains of 20-day old fetuses but not in animals on day 17. Alkaline phosphatase was however depressed at this stage.

The suggestion is made that because of the complexity of brain development, future biochemical studies in this area should concern specific structures in the brain at particular critical stages during neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. S. Hurley, inClinical Applications of Zinc Metabolism, W. J. Pories, H. H. Strain, J. M. Hsu, and R. L. Woosley, eds., Thomas, Illinois, 1974, pp. 57–76.

    Google Scholar 

  2. L. S. Hurley and R. E. Shrader, inInternational Review of Neurobiology, C. C. Pfeiffer, ed., Academic Press, New York, 1972, pp. 7–50.

    Google Scholar 

  3. A. Adeloye and J. Warkary,Childs Brain 2, 325 (1976).

    PubMed  CAS  Google Scholar 

  4. H. Swenerton, R. Shrader, and L. S. Hurley,Science 166, 1014 (1969).

    Article  PubMed  CAS  Google Scholar 

  5. C. D. Eckhert and L. S. Hurley,J. Nutr. 107, 855 (1977).

    PubMed  CAS  Google Scholar 

  6. M. Fujioka and I. Lieberman,J. Biol. Chem. 239, 1164 (1964).

    PubMed  CAS  Google Scholar 

  7. A. S. Prasad and D. Oberleas,J. Lab. Clin. Med. 83, 634 (1974).

    PubMed  CAS  Google Scholar 

  8. J. R. Duncan and I. E. Dreosti,J. Comp. Path. 86, 81 (1975).

    Article  Google Scholar 

  9. E. Bresnick, U. B. Thompson, H. B. Morris, and A. G. Liebelt,Biochem. Biophys. Res. Commun. 16, 278 (1964).

    Article  PubMed  CAS  Google Scholar 

  10. Davidson, J. N.,The Biochemistry of the Nucleic Acids, 7th ed., Methuen, London, 1972, pp. 607.

    Google Scholar 

  11. I. E. Dreosti and L. S. Hurley,Proc. Soc. Exp. Biol. Med. 150, 161 (1975).

    PubMed  CAS  Google Scholar 

  12. J. R. Duncan and L. S. Hurley,Proc. Soc. Exp. Biol. Med. 159, 39 (1978).

    PubMed  CAS  Google Scholar 

  13. J. M. McKenzie, G. J. Fosmire and H. H. Sandstead,J. Nutr. 105, 1466 (1975).

    PubMed  CAS  Google Scholar 

  14. E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. H. H. Sandstead, G. J. Fosmire, J. M. McKenzie, and E. S. Halas,Fed. Proc. 34, 86 (1975).

    PubMed  CAS  Google Scholar 

  16. H. H. Sandstead, D. D. Gilespie, and R. N. Brady,Pediat. Res. 6, 119 (1972).

    Article  PubMed  CAS  Google Scholar 

  17. S. R. Cohen, inHandbook of Neurochemistry, A. Lajtha, ed., Plenum, New York, 1970, pp. 87–131.

    Google Scholar 

  18. P. Cohn and D. Richter,J. Neurochem. 1, 66 (1956).

    Article  Google Scholar 

  19. M. Kirchgessner, H. P. Roth, and E. Weigand, inTrace Elements in Human Health and Disease, A. S. Prasad, and D. Oberleas, eds., Academic, New York, 1976, pp. 189–219.

    Google Scholar 

  20. P. J. Wilkins, P. C. Grey, and I. E. Dreosti,Brit. J. Nutr. 27, 113 (1972).

    Article  PubMed  CAS  Google Scholar 

  21. P. N. Davis, L. D. Norris, and F. H. Kratzer,J. Nutr. 78, 445 (1962).

    PubMed  CAS  Google Scholar 

  22. H. N. Munro and A. Fleck,Meth. Biochem. Anal. 14, 113 (1966).

    Article  CAS  Google Scholar 

  23. K. Burton,Biochem. J. 62, 315 (1956).

    PubMed  CAS  Google Scholar 

  24. H. P. Witschi,Biochem. J. 120, 623 (1970).

    PubMed  CAS  Google Scholar 

  25. D. H. Ives, J. P. Durham, and V. S. Tucker,Anal. Biochem. 28, 192 (1969).

    Article  PubMed  CAS  Google Scholar 

  26. O. H. Lowry, H. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).

    PubMed  CAS  Google Scholar 

  27. Documenta Geigy, Scientific Tables, K. Diem, ed., Geigy, S. A., Basle, 1962 pp. 165.

    Google Scholar 

  28. O. A. Bessey, O. H. Lowry, and M. J. Brock,J. Biol. Chem. 164, 321 (1946).

    CAS  Google Scholar 

  29. J. Langman, W. Webster, and P. Rodier, inTeratology, Trends and Applications, G. L. Berry, and D. E. Poswillo, eds., Springer-Verlag, Berlin, 1975, pp. 182–200.

    Google Scholar 

  30. B. L. O'Dell, inClinical Aspects of Zinc Metabolism, W. J. Pories, W. H. Strain, J. M. Hsu, and R. L. Woosley, eds., Thomas, Illinois, 1974, pp. 5–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreosti, I.E., Record, I.R. & Manuel, S.J. Incorporation of3H-thymidine into DNA and the activity of alkaline phosphatase in zinc-deficient fetal rat brains. Biol Trace Elem Res 2, 21–29 (1980). https://doi.org/10.1007/BF02789032

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789032

Index Entries

Navigation