Biological Trace Element Research

, Volume 2, Issue 1, pp 21–29 | Cite as

Incorporation of3H-thymidine into DNA and the activity of alkaline phosphatase in zinc-deficient fetal rat brains

  • Ivor E. Dreosti
  • Ian R. Record
  • Susan J. Manuel
Original Articles


The incorporation of3H-thymidine into DNA in the brains of the 17-day and 20-day old rat fetuses was significantly reduced by maternal zinc restriction during pregnancy. The activity of the enzyme thymidine kinase (EC was similarly reduced in the zine-deprived fetal brains on days 14 and 20 of gestation, but not on day 17. Fetal brain alkaline phosphatase (EC was significantly depressed by maternal zinc deprivation on days 17 and 20 of pregnancy.

The data suggest an association between thymidine kinase and the reduced incorporation of3H-thymidine into DNA in the brains of 20-day old fetuses but not in animals on day 17. Alkaline phosphatase was however depressed at this stage.

The suggestion is made that because of the complexity of brain development, future biochemical studies in this area should concern specific structures in the brain at particular critical stages during neurogenesis.

Index Entries

Zinc-deficiency, in fetal rat brains fetal brain DNA, in Zn deficient rats thymidine kinase, incorporation in Zn-deficient rats alkaline phosphatase, activity in Zn-deficient rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Hurley, inClinical Applications of Zinc Metabolism, W. J. Pories, H. H. Strain, J. M. Hsu, and R. L. Woosley, eds., Thomas, Illinois, 1974, pp. 57–76.Google Scholar
  2. 2.
    L. S. Hurley and R. E. Shrader, inInternational Review of Neurobiology, C. C. Pfeiffer, ed., Academic Press, New York, 1972, pp. 7–50.Google Scholar
  3. 3.
    A. Adeloye and J. Warkary,Childs Brain 2, 325 (1976).PubMedGoogle Scholar
  4. 4.
    H. Swenerton, R. Shrader, and L. S. Hurley,Science 166, 1014 (1969).PubMedCrossRefGoogle Scholar
  5. 5.
    C. D. Eckhert and L. S. Hurley,J. Nutr. 107, 855 (1977).PubMedGoogle Scholar
  6. 6.
    M. Fujioka and I. Lieberman,J. Biol. Chem. 239, 1164 (1964).PubMedGoogle Scholar
  7. 7.
    A. S. Prasad and D. Oberleas,J. Lab. Clin. Med. 83, 634 (1974).PubMedGoogle Scholar
  8. 8.
    J. R. Duncan and I. E. Dreosti,J. Comp. Path. 86, 81 (1975).CrossRefGoogle Scholar
  9. 9.
    E. Bresnick, U. B. Thompson, H. B. Morris, and A. G. Liebelt,Biochem. Biophys. Res. Commun. 16, 278 (1964).PubMedCrossRefGoogle Scholar
  10. 10.
    Davidson, J. N.,The Biochemistry of the Nucleic Acids, 7th ed., Methuen, London, 1972, pp. 607.Google Scholar
  11. 11.
    I. E. Dreosti and L. S. Hurley,Proc. Soc. Exp. Biol. Med. 150, 161 (1975).PubMedGoogle Scholar
  12. 12.
    J. R. Duncan and L. S. Hurley,Proc. Soc. Exp. Biol. Med. 159, 39 (1978).PubMedGoogle Scholar
  13. 13.
    J. M. McKenzie, G. J. Fosmire and H. H. Sandstead,J. Nutr. 105, 1466 (1975).PubMedGoogle Scholar
  14. 14.
    E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    H. H. Sandstead, G. J. Fosmire, J. M. McKenzie, and E. S. Halas,Fed. Proc. 34, 86 (1975).PubMedGoogle Scholar
  16. 16.
    H. H. Sandstead, D. D. Gilespie, and R. N. Brady,Pediat. Res. 6, 119 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    S. R. Cohen, inHandbook of Neurochemistry, A. Lajtha, ed., Plenum, New York, 1970, pp. 87–131.Google Scholar
  18. 18.
    P. Cohn and D. Richter,J. Neurochem. 1, 66 (1956).CrossRefGoogle Scholar
  19. 19.
    M. Kirchgessner, H. P. Roth, and E. Weigand, inTrace Elements in Human Health and Disease, A. S. Prasad, and D. Oberleas, eds., Academic, New York, 1976, pp. 189–219.Google Scholar
  20. 20.
    P. J. Wilkins, P. C. Grey, and I. E. Dreosti,Brit. J. Nutr. 27, 113 (1972).PubMedCrossRefGoogle Scholar
  21. 21.
    P. N. Davis, L. D. Norris, and F. H. Kratzer,J. Nutr. 78, 445 (1962).PubMedGoogle Scholar
  22. 22.
    H. N. Munro and A. Fleck,Meth. Biochem. Anal. 14, 113 (1966).CrossRefGoogle Scholar
  23. 23.
    K. Burton,Biochem. J. 62, 315 (1956).PubMedGoogle Scholar
  24. 24.
    H. P. Witschi,Biochem. J. 120, 623 (1970).PubMedGoogle Scholar
  25. 25.
    D. H. Ives, J. P. Durham, and V. S. Tucker,Anal. Biochem. 28, 192 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    O. H. Lowry, H. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  27. 27.
    Documenta Geigy, Scientific Tables, K. Diem, ed., Geigy, S. A., Basle, 1962 pp. 165.Google Scholar
  28. 28.
    O. A. Bessey, O. H. Lowry, and M. J. Brock,J. Biol. Chem. 164, 321 (1946).Google Scholar
  29. 29.
    J. Langman, W. Webster, and P. Rodier, inTeratology, Trends and Applications, G. L. Berry, and D. E. Poswillo, eds., Springer-Verlag, Berlin, 1975, pp. 182–200.Google Scholar
  30. 30.
    B. L. O'Dell, inClinical Aspects of Zinc Metabolism, W. J. Pories, W. H. Strain, J. M. Hsu, and R. L. Woosley, eds., Thomas, Illinois, 1974, pp. 5–8.Google Scholar

Copyright information

© The Humana Press Inc 1980

Authors and Affiliations

  • Ivor E. Dreosti
    • 1
  • Ian R. Record
    • 1
  • Susan J. Manuel
    • 1
  1. 1.Division of Human NutritionCSIROAdelaide

Personalised recommendations