Skip to main content
Log in

Extracellular cellulolytic enzymes ofBacillus circulans are present as two multipleprotein complexes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The cellulase system ofBacillus circulans F-2 effectively hydrolyzed carboxymethyl cellulose (CMC), xylan, avicel, cellobiose, filter paper, cotton, andp-nitrophenyl-Β-D-cellobioside, and the crude enzyme produced mainly glucose from digestion of avicel. Two major and one minor peaks of enzyme activities were eluted on DEAE ion-exchange chromatography, and designated cellulase complex I(C-I) and complex II(C-II) for the two major peaks, and cellulase-III for a minor peak. C-I and C-II were further purified on gel filtration column of a TSK-Gel SW G3000 ×L. The molecular masses of C-I and C-II were estimated to be about 669 and 443 kDa, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the C-I and C-II complexes showed that the C-I complex was present as a multiple protein complex, consisting of at least five CMCases and two xylanases, and that the C-II complex was consisted of at least three CMCase and four xylan ases. C-I showed high activities of cellohydrolase, CMCase, xylanase, and Β-glucosidase, whereas C-II showed high activities of CMCase, xylanase, avicelase, and Β-glucosidase. The outstanding property of the C-II was its high hydrolytic activity toward filter paper, a highly resistant substrate against enzymatic degradation. However, cellulaseIII showed only strong avicelase activity. These results indicated that the cellulase system of the strain exists as multiple complex forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMC:

carboxylmethyl cellulose

FP:

filter paper

kDa:

kilodalton

DNS:

3′,5′-dinitrosalicylic acid

pNPC:

p-nitrophenyl-Β-d-cellobioside

pNPX:

p-nitrophenyl-Β-d-xylopyranoside

pNPG:

p- nitrophenyl-Β-d-glucopyranoside

PAGE:

polyacrylamide gel electrophoresis

CBH:

cellobiohydrolase

SDS:

sodium dodecyl sulfate

References

  1. Uzcategui, E., Ruiz, A., Montesino, R., Johansson, G., and Pettersson, G. (1991),J. Biotechnol. 19, 271–286.

    Article  CAS  Google Scholar 

  2. Tomme, P., V. Tilbeurgh, Pettersson, G., v.Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988),Eur. J. Biochem. 170, 575–581.

    Article  CAS  Google Scholar 

  3. Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.

    Article  CAS  Google Scholar 

  4. Eriksson, K. E. and Pettersson, B. (1975),Eur. J. Biochem. 51, 193–206.

    Article  CAS  Google Scholar 

  5. Kim, C. H. and Kim, D. S. (1992),J. Microbiol. Biotechnol. 2, 7–13.

    Google Scholar 

  6. Bisaria, V. S. and Mishra, W. (1989),Crit. Rev. Biotechnol. 9, 61–103.

    Article  CAS  Google Scholar 

  7. Lamed, R., Setter, E., and Bayer, E. A. (1983),J. Bacteriol. 156, 828–836.

    CAS  Google Scholar 

  8. Andreotti, R. E., Mandels, M., and Roche, C. (1977),Proc. Bioconversion Symp. HT Delhi, 249–269.

  9. Berghem, L. E. and Pettersson, L. G. (1973),Eur. J. Biochem. 37, 21–30.

    Article  CAS  Google Scholar 

  10. Ogawa, K., Toyama, H., and Toyama, N. (1982),J. Ferment. Technol. 60, 349–355.

    CAS  Google Scholar 

  11. Morag, E., Halevy, L., Bayer, E. A., and Lamed, R. (1991),J. Bacteriol 173, 4155–4162.

    CAS  Google Scholar 

  12. Beguin, P. (1990),Annu. Rev. Microbiol 44, 219–248.

    Article  CAS  Google Scholar 

  13. Lamed, R. and Bayer, E. A. (1988),Methods in Enzymol. 160, 472–482.

    CAS  Google Scholar 

  14. Lin, L. L. and Thomson, J. A. (1991),FEMS Microbiol Lett. 84, 197–204.

    Article  CAS  Google Scholar 

  15. Doerner, K. C. and White, B. A. (1990),Appl. Environ. Microbiol. 56, 1844–1850.

    CAS  Google Scholar 

  16. Cavedon, K., Leschine, S. B., and Canale-Parola, E. (1990),J. Bacteriol. 172, 4222–4230.

    CAS  Google Scholar 

  17. Langsford, M. C., Gilkes, N. R., Wakarchuk, W. W., Kilburn, D. G., Miller, Jr., R.C., and Warren, R. A. J. (1984),J. Gen. Microbiol. 130, 1367–1376.

    CAS  Google Scholar 

  18. Taniguchi, H., Odashima, F., Igarashi, M., Maruyama, Y., and Nakamura, M. (1982),Agric. Biol. Chem. 46, 2107–2112.

    CAS  Google Scholar 

  19. Taniguchi, H., Chung, M. J., Yoshigi, N., and Maruyama, Y. (1983),Agric. Biol. Chem. 47, 511–518.

    CAS  Google Scholar 

  20. Sata, H., Taniguchi, H., and Maruyama, Y. (1987),Agric. Biol. Chem. 51, 2803–2808.

    Google Scholar 

  21. Sata, H., Umeda, M., Kim, C. H., Taniguchi, H., and Maruyama, Y. (1989),Biochim. Biophys. Acta. 991, 388–394.

    CAS  Google Scholar 

  22. Kim, C. H., Kim, D. S., Taniguchi, H., and Maruyama, Y. (1990),J. Chromatog. 51, 131–137.

    Article  Google Scholar 

  23. Sata, H., Taniguchi, H., and Maruyama, Y. (1987),Agric. Biol. Chem. 51, 3275–3281.

    CAS  Google Scholar 

  24. Miller, G. L. (1959),Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  25. Desphande, M. U., Erikson, R. E., and Petterson, L. G. (1984),Anal. Biochem. 138, 481–487.

    Article  Google Scholar 

  26. Saloman, L. L. and Johnson, J. E. (1959),Anal. Chem. 31, 453–458.

    Article  Google Scholar 

  27. Yamanobe, T., Mitsubish, Y., and Takasaki, Y. (1987),Agric. Biol., Chem. 51, 65–71.

    CAS  Google Scholar 

  28. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  29. Dubois, M. Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956),Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  30. Kim, C. H., Kwon, S. T., Taniguchi, H., and Lee, D. S. (1992),Biochim. Biophys. Acta 1122, 243–250.

    CAS  Google Scholar 

  31. Laemmli, U. K. (1970),Nature 227, 680–685.

    Article  CAS  Google Scholar 

  32. Robson, L. M. and Chambliss, G. H. (1984),Appl. Environ. Microbiol. 47, 1039–1046.

    CAS  Google Scholar 

  33. Koide, Y., Nakamura, A., Uozumi, T., and Beppu, T. (1986),Agric. Biol. Chem. 50, 233–237.

    CAS  Google Scholar 

  34. Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., and Vadehra, D. J. (1985),Biotechnol. Lett. 7, 695–697.

    Article  CAS  Google Scholar 

  35. Thayer, D. W. (1978),J. Gen. Microbiol. 106, 13–18.

    CAS  Google Scholar 

  36. Johnson, E. A., Sakajoh, M. M., Halliwell, G., Madia, A., and Demain, A. L. (1982),Appl. Environ. Microbiol. 43, 1125–1132.

    CAS  Google Scholar 

  37. Murao, S., Sakamoto, R., and Arai, M. (1985),Agric. Biol. Chem. 49, 3511–3517.

    CAS  Google Scholar 

  38. Singh, A., Agrawal, A. K., Abidi, A. B., and Darmwal, N. S. (1990),J. Gen. Appl. Microbiol. 36, 245–253.

    CAS  Google Scholar 

  39. Lamed, R. and Bayer, E. A. (1988),Adv. Appl. Microbiol. 33, 1–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CH., Kim, DS. Extracellular cellulolytic enzymes ofBacillus circulans are present as two multipleprotein complexes. Appl Biochem Biotechnol 42, 83–94 (1993). https://doi.org/10.1007/BF02788904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788904

Index Entries

Navigation