Applied Biochemistry and Biotechnology

, Volume 42, Issue 1, pp 83–94 | Cite as

Extracellular cellulolytic enzymes ofBacillus circulans are present as two multipleprotein complexes

  • Cheorl-Ho Kim
  • Dong-Soo Kim


The cellulase system ofBacillus circulans F-2 effectively hydrolyzed carboxymethyl cellulose (CMC), xylan, avicel, cellobiose, filter paper, cotton, andp-nitrophenyl-Β-D-cellobioside, and the crude enzyme produced mainly glucose from digestion of avicel. Two major and one minor peaks of enzyme activities were eluted on DEAE ion-exchange chromatography, and designated cellulase complex I(C-I) and complex II(C-II) for the two major peaks, and cellulase-III for a minor peak. C-I and C-II were further purified on gel filtration column of a TSK-Gel SW G3000 ×L. The molecular masses of C-I and C-II were estimated to be about 669 and 443 kDa, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the C-I and C-II complexes showed that the C-I complex was present as a multiple protein complex, consisting of at least five CMCases and two xylanases, and that the C-II complex was consisted of at least three CMCase and four xylan ases. C-I showed high activities of cellohydrolase, CMCase, xylanase, and Β-glucosidase, whereas C-II showed high activities of CMCase, xylanase, avicelase, and Β-glucosidase. The outstanding property of the C-II was its high hydrolytic activity toward filter paper, a highly resistant substrate against enzymatic degradation. However, cellulaseIII showed only strong avicelase activity. These results indicated that the cellulase system of the strain exists as multiple complex forms.

Index Entries

Endo-Β-glucanase Β-glucosidase Avicelase filter paper-hydrolase enzyme complex cellulo-xylanosome Bacillus circulons F-2 



carboxylmethyl cellulose


filter paper




3′,5′-dinitrosalicylic acid






p- nitrophenyl-Β-d-glucopyranoside


polyacrylamide gel electrophoresis




sodium dodecyl sulfate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uzcategui, E., Ruiz, A., Montesino, R., Johansson, G., and Pettersson, G. (1991),J. Biotechnol. 19, 271–286.CrossRefGoogle Scholar
  2. 2.
    Tomme, P., V. Tilbeurgh, Pettersson, G., v.Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988),Eur. J. Biochem. 170, 575–581.CrossRefGoogle Scholar
  3. 3.
    Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.CrossRefGoogle Scholar
  4. 4.
    Eriksson, K. E. and Pettersson, B. (1975),Eur. J. Biochem. 51, 193–206.CrossRefGoogle Scholar
  5. 5.
    Kim, C. H. and Kim, D. S. (1992),J. Microbiol. Biotechnol. 2, 7–13.Google Scholar
  6. 6.
    Bisaria, V. S. and Mishra, W. (1989),Crit. Rev. Biotechnol. 9, 61–103.CrossRefGoogle Scholar
  7. 7.
    Lamed, R., Setter, E., and Bayer, E. A. (1983),J. Bacteriol. 156, 828–836.Google Scholar
  8. 8.
    Andreotti, R. E., Mandels, M., and Roche, C. (1977),Proc. Bioconversion Symp. HT Delhi, 249–269.Google Scholar
  9. 9.
    Berghem, L. E. and Pettersson, L. G. (1973),Eur. J. Biochem. 37, 21–30.CrossRefGoogle Scholar
  10. 10.
    Ogawa, K., Toyama, H., and Toyama, N. (1982),J. Ferment. Technol. 60, 349–355.Google Scholar
  11. 11.
    Morag, E., Halevy, L., Bayer, E. A., and Lamed, R. (1991),J. Bacteriol 173, 4155–4162.Google Scholar
  12. 11.
    Beguin, P. (1990),Annu. Rev. Microbiol 44, 219–248.CrossRefGoogle Scholar
  13. 13.
    Lamed, R. and Bayer, E. A. (1988),Methods in Enzymol. 160, 472–482.Google Scholar
  14. 14.
    Lin, L. L. and Thomson, J. A. (1991),FEMS Microbiol Lett. 84, 197–204.CrossRefGoogle Scholar
  15. 15.
    Doerner, K. C. and White, B. A. (1990),Appl. Environ. Microbiol. 56, 1844–1850.Google Scholar
  16. 16.
    Cavedon, K., Leschine, S. B., and Canale-Parola, E. (1990),J. Bacteriol. 172, 4222–4230.Google Scholar
  17. 17.
    Langsford, M. C., Gilkes, N. R., Wakarchuk, W. W., Kilburn, D. G., Miller, Jr., R.C., and Warren, R. A. J. (1984),J. Gen. Microbiol. 130, 1367–1376.Google Scholar
  18. 18.
    Taniguchi, H., Odashima, F., Igarashi, M., Maruyama, Y., and Nakamura, M. (1982),Agric. Biol. Chem. 46, 2107–2112.Google Scholar
  19. 19.
    Taniguchi, H., Chung, M. J., Yoshigi, N., and Maruyama, Y. (1983),Agric. Biol. Chem. 47, 511–518.Google Scholar
  20. 20.
    Sata, H., Taniguchi, H., and Maruyama, Y. (1987),Agric. Biol. Chem. 51, 2803–2808.Google Scholar
  21. 21.
    Sata, H., Umeda, M., Kim, C. H., Taniguchi, H., and Maruyama, Y. (1989),Biochim. Biophys. Acta. 991, 388–394.Google Scholar
  22. 22.
    Kim, C. H., Kim, D. S., Taniguchi, H., and Maruyama, Y. (1990),J. Chromatog. 51, 131–137.CrossRefGoogle Scholar
  23. 23.
    Sata, H., Taniguchi, H., and Maruyama, Y. (1987),Agric. Biol. Chem. 51, 3275–3281.Google Scholar
  24. 24.
    Miller, G. L. (1959),Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  25. 25.
    Desphande, M. U., Erikson, R. E., and Petterson, L. G. (1984),Anal. Biochem. 138, 481–487.CrossRefGoogle Scholar
  26. 26.
    Saloman, L. L. and Johnson, J. E. (1959),Anal. Chem. 31, 453–458.CrossRefGoogle Scholar
  27. 27.
    Yamanobe, T., Mitsubish, Y., and Takasaki, Y. (1987),Agric. Biol., Chem. 51, 65–71.Google Scholar
  28. 28.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.Google Scholar
  29. 29.
    Dubois, M. Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956),Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  30. 30.
    Kim, C. H., Kwon, S. T., Taniguchi, H., and Lee, D. S. (1992),Biochim. Biophys. Acta 1122, 243–250.Google Scholar
  31. 31.
    Laemmli, U. K. (1970),Nature 227, 680–685.CrossRefGoogle Scholar
  32. 32.
    Robson, L. M. and Chambliss, G. H. (1984),Appl. Environ. Microbiol. 47, 1039–1046.Google Scholar
  33. 33.
    Koide, Y., Nakamura, A., Uozumi, T., and Beppu, T. (1986),Agric. Biol. Chem. 50, 233–237.Google Scholar
  34. 34.
    Dhillon, N., Chhibber, S., Saxena, M., Pajni, S., and Vadehra, D. J. (1985),Biotechnol. Lett. 7, 695–697.CrossRefGoogle Scholar
  35. 35.
    Thayer, D. W. (1978),J. Gen. Microbiol. 106, 13–18.Google Scholar
  36. 36.
    Johnson, E. A., Sakajoh, M. M., Halliwell, G., Madia, A., and Demain, A. L. (1982),Appl. Environ. Microbiol. 43, 1125–1132.Google Scholar
  37. 37.
    Murao, S., Sakamoto, R., and Arai, M. (1985),Agric. Biol. Chem. 49, 3511–3517.Google Scholar
  38. 38.
    Singh, A., Agrawal, A. K., Abidi, A. B., and Darmwal, N. S. (1990),J. Gen. Appl. Microbiol. 36, 245–253.Google Scholar
  39. 39.
    Lamed, R. and Bayer, E. A. (1988),Adv. Appl. Microbiol. 33, 1–46.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Cheorl-Ho Kim
    • 1
  • Dong-Soo Kim
    • 2
  1. 1.Genome Research Program and Laboratory of Molecular BiologyGenetic Engineering Research Institute, KISTYusungku, Taejeon
  2. 2.Department of Food Science and TechnologyKyungsung UniversityPusanKorea

Personalised recommendations