Israel Journal of Mathematics

, Volume 7, Issue 4, pp 325–349 | Cite as

The ℒ p spaces

  • J. Lindenstrauss
  • H. P. Rosenthal


The ℒ p spaces which were introduced by A. Pełczyński and the first named author are studied. It is proved, e.g., that (i)X is an ℒ p space if and only ifX* is and ℒ q space (p −1+q −1=1). (ii) A complemented subspace of an ℒ p space is either an ℒ p or an ℒ2 space. (iii) The ℒ p spaces have sufficiently many Boolean algebras of projections. These results are applied to show thatX is an ℒ (resp. ℒ1) space if and only ifX admits extensions (resp. liftings) of compact operators havingX as a domain or range space. We also prove a theorem on the “local reflexivity” of an arbitrary Banach space.


Banach Space Boolean Algebra Compact Operator Isomorphic Type Closed Linear Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bessaga and A. Pełczyński,On bases and unconditional convergence of series in Banach spaces, Studia Math.17 (1958), 151–164.MATHMathSciNetGoogle Scholar
  2. 2.
    C. Bessaga and A. Pełczyňski,Spaces of continuous functions IV, Studia Math.19 (1960), 53–62.MATHMathSciNetGoogle Scholar
  3. 3.
    M. M. Day,Normed linear spaces, New York, 1962.Google Scholar
  4. 4.
    N. Dunford and J. T. Schwartz,Linear operators I, New York, 1958.Google Scholar
  5. 5.
    A. Grothendieck,Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc.16 (1955).Google Scholar
  6. 6.
    A. Grothendieck,Une caracterisation vectorielle métrique des espaces L 1, Canad. J. Math.7 (1955), 552–561.MATHMathSciNetGoogle Scholar
  7. 7.
    R. C. James,Uniformly non-square Banach spaces, Ann. of Math.80 (1964), 542–550.CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. I. Kadec and A. Pełczyňski,Bases, lacunary sequences and complemented subspaces in the spaces L p, Studia Math.21 (1962), 161–176.MATHMathSciNetGoogle Scholar
  9. 9.
    S. Kakutani,Some characterizations of Euclidean spaces, Japan J. Math.16 (1939), 93–97.MATHMathSciNetGoogle Scholar
  10. 10.
    V. Klee,On certain intersection properties of convex sets, Canad. J. Math.3 (1951), 272–275.MATHMathSciNetGoogle Scholar
  11. 11.
    G. Köthe,Hebbare lokalkonvexe Raüme, Math. An.165 (1966), 181–195.MATHCrossRefGoogle Scholar
  12. 12.
    J. Lindenstrauss,On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J.10 (1963), 241–252.CrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Lindenstrauss,Extension of compact operators, Mem. Amer. Math. Soc.48 (1964).Google Scholar
  14. 14.
    J. Lindenstrauss,On a certain subspace of l 1, Bull. Acad. Polon. Sci.12 (1964), 539–542.MATHMathSciNetGoogle Scholar
  15. 15.
    J. Lindenstrauss,On the extension of operators with a finite-dimensional range, Illinois J. Math.8 (1964), 488–499.MATHMathSciNetGoogle Scholar
  16. 16.
    J. Lindenstrauss and A. Pełczynski,Absolutely summing operators in ℒ p spaces and their applications, Studia. Math.29 (1968), 275–326.MATHMathSciNetGoogle Scholar
  17. 17.
    J. Lindenstrauss and H. P. Rosenthal,Automorphisms in c 0,l 1,and m, Israel J. Math.7 (1969), 227–239.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Lindenstrauss and D. Wulbert,On the classification of Banach spaces whose duals are L 1 spaces, J. Functional Analysis4 (1969), 332–349.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Lindenstrauss and M. Zippin,Banach spaces with sufficiently many Boolean algebras of Projections, J. Math. Anal. Appl.25 (1969), 309–320.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    A. A. Milutin,Isomorphism of spaces of continuous functions on compacta of power continuum, Tieoria Funct., Funct. Anal. i Pril (Kharkov)2 (1966), 150–156 (Russian).Google Scholar
  21. 21.
    A. Pełczyňski,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228.MathSciNetGoogle Scholar
  22. 22.
    A. Pełczyňski,Linear extensions, linear averagings and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math., n. 58 (1968).Google Scholar
  23. 23.
    H. P. Rosenthal,Projections onto translation-invariant subspaces of L p(G), Mem. Amer. Math. Soc.63 (1966).Google Scholar
  24. 24.
    H. P. Rosenthal, On injective Banach spaces and the spaces ℒ (μ) for finite measures μ, (to appear).Google Scholar
  25. 25.
    W. Rudin,Trigonometric series with gaps, J. Math. Mech.9 (1960), 203–227.MATHMathSciNetGoogle Scholar
  26. 26.
    A. Sobczyk,Projections in Minkowski and Banach spaces, Duke Math. J.8 (1941), 78–106.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    L. Tzafriri,An isomorphic characterization of L p and c 0 spaces, Studia Math.32 (1969), 286–295.MathSciNetGoogle Scholar
  28. 28.
    L. Tzafriri,Remarks on contractive projections in L p spaces, Israel J. Math.7 (1969), 9–15.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    M. Zippin,On some subspaces of Banach spaces whose duals are L 1 spaces, Proc. Amer. Math. Soc.23 (1969) 378–385.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Weizmann Science Press of Israel 1969

Authors and Affiliations

  • J. Lindenstrauss
    • 1
    • 2
  • H. P. Rosenthal
    • 1
    • 2
  1. 1.Hebrew University of JerusalemIsrael
  2. 2.University of CaliforniaBerkeley

Personalised recommendations