Applied Biochemistry and Biotechnology

, Volume 37, Issue 1, pp 69–80 | Cite as

Adsorption of Phenylalanine from Casein Hydrolysates

  • A. M. H. Vasconcellos
  • C. P. H. Oliveira
  • D. M. Grassiano
  • A. L. C. Santos-Neto


The specific diet therapy for phenylalaninemies requires special hydrolysates of proteins where phenylalanine content is reduced to approx 0.53% of the amino acids present. In previous work, Amberlite XAD-4 resin was used to retain phenylalanine from an acid hydrolysate of casein. It was also observed that the adsorption isotherm of phenylalanine on the resin showed a convex pattern that allowed a frontal chromatography. In the present study, this technique was improved, aiming at the processing of larger hydrolysates volumes. This was achieved with the use of two sequential columns (50 × 1 cm), each containing 34 cm3 of the resin, and joined through a 1-cm long tygon, tube 1 mm diameter. This system was used to process 100 mL of casein acid hydrolysate containing 12 g of free amino acid and allowed the reduction of phenylalanine content from 4.39 to 0.14% of the total amino acids present, within 1 h. It was also observed that this technique could not be directly applied to enzymatic hydrolysates of casein unless they were especially produced for this purpose, which means that in this kind of hydrolysate, phenylalanine should be free or linked in small adsorptive peptides.

Index Entries

Phenylalanine adsorption low phenylalanine hydrolysate enzymatic hydrolysate of casein protein hydrolysates adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vasconcellos, A. M. H., Santos-Neto, A. L. C., Grassiano, D. M., and Oliveira, C. P. H. (1989),Biotech. Bioeng. 33, 1324.CrossRefGoogle Scholar
  2. 2.
    Hagdali, L. (1961), inChromatography Reinhold, New York, pp. 156–161.Google Scholar
  3. 3.
    Tourian, A. and Sidbury, J. B. (1983), inMetabolic Basis of Inherited Disease McGraw-Hill, New York, p. 270.Google Scholar
  4. 4.
    Matthews, D. M. and Adibi, S. A. (1974),Gastroenterology 71, 151.Google Scholar
  5. 5.
    Adibi, S. A., Fogel, M. R., and Agrawal, R. M. (1974),Gastroenterology 67, 586.Google Scholar
  6. 6.
    Teichberg, S., Lifshift, F., Pergolizzik, R., and Wapnir, R. A. (1978),Pediat. Res. 12, 720.CrossRefGoogle Scholar
  7. 7.
    Lebeau, P. and Janot, M. M. (1956),Traiteé de Phamacie Chimique Masson, Paris, pp. 256–258.Google Scholar
  8. 8.
    Simpson, R.J., Neuberger, M. R., and Liu, T. Y. (1976),J. Biol. Chem. 251, 1936.Google Scholar
  9. 9.
    Bull, H.B. and Breese, K. (1974),Arch. Bioch. Bioph. 161, 665.CrossRefGoogle Scholar
  10. 10.
    Yashin, Y. I. (1982),J. Chrom. 251, 269.CrossRefGoogle Scholar
  11. 11.
    Regnier, E. E. and Mazseroff, I. (1987),Biotech. Prog. 3, 22.Google Scholar
  12. 12.
    Teichberg, S., Lifshitz, F., Pergolizzi, R., and Wapnir, R. A. (1978),Pediat. Res. 12, 270.CrossRefGoogle Scholar
  13. 13.
    Adibi, S. A. (1976),Am. J. Clin. Nut. 29, 205.Google Scholar
  14. 14.
    Adibi, S. A. (1971),J. Clin. Invest. 50, 2266.CrossRefGoogle Scholar
  15. 15.
    Freitas, O., Lamounier, J. A., Oliveira, J. E., Santos, J. E., and Greene, L. J. (1984),Arq. Biol. Technol. 27, 251.Google Scholar

Copyright information

© The Humana Press Inc 1992

Authors and Affiliations

  • A. M. H. Vasconcellos
    • 1
  • C. P. H. Oliveira
    • 1
  • D. M. Grassiano
    • 1
  • A. L. C. Santos-Neto
    • 1
  1. 1.Instituteo de QuimicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations