Advertisement

Applied Biochemistry and Biotechnology

, Volume 37, Issue 1, pp 53–68 | Cite as

Oxidation of Dibenzothiophene Catalyzed by Hemoglobin and Other Hemoproteins in Various Aqueous-Organic Media

  • Natalia L. Klyachko
  • Alexander M. Klibanov
Article

Abstract

Biocatalytic oxidation of dibenzothiophene (a model of organic sulfur in coal) with hydrogen peroxide was investigated. It was found that various hemoproteins, both enzymic (e.g., horseradish peroxidase) and nonenzymic (e.g., bovine blood hemoglobin), readily oxidized dibensothiophene to its S-oxide and, to a minor extent, further to its S-dioxide (sulfone). This process catalyzed by hemoglobin (a slaughterhouse waste protein) was studied in a number of monophasic aqueousorganic mixtures. Although hemoglobin was competent as an oxidation catalyst even in nearly dry organic solvents (with protic, acidic solvents being optimal), the highest conversions were observed in predominantly aqueous media. The hemoglobin-catalyzed oxidation of dibenzothiophene at low concentrations of the protein stopped long before all the substrate was oxidized. This phenomenon was caused by inactivation of hemoglobin by hydrogen peroxide that destroyed the heme moiety. The maximal degree of the hemoglobin-catalyzed dibenzothiophene oxidation was predicted, and found, to be strongly dependent on the reaction medium composition.

Index Entries

Hemoglobin peroxidase coal desulfurization dibenzothiophene aqueous-organic media for biocatalysis biooxidations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Speight, J. G., ed. (1990),Fuel Science and Technology Handbook, Marcel Dekker, New York.Google Scholar
  2. 2.
    Larsen, J. W., ed. (1978),Organic Chemistry of Coal, ACS Symposium Series, vol. 71, American Chemical Society, Washington, D.C.Google Scholar
  3. 3.
    Kilbane, J. J. (1989),Trends Biotechnol. 7, 97–101.CrossRefGoogle Scholar
  4. 4.
    Faison, B. D., Clark, T. M., Lewis, S. N., Ma, C. Y., Sharkey, D. M., and Woodward, C. A. (1991),Appl. Biochem. Biotechnol. 28/29, 237–251.CrossRefGoogle Scholar
  5. 5.
    Perez, U. and Dunford, H. B. (1990),Biochim. Biophys. Acta 1038, 98–104.Google Scholar
  6. 6.
    Perez, U. and Dunford, H. B. (1990),Biochemistry 29, 2757–2765.CrossRefGoogle Scholar
  7. 7.
    Doedge, D. R., Cooray, N. M., and Brewster, M. E. (1991),Biochemistry 30, 8960–8964.CrossRefGoogle Scholar
  8. 8.
    Colonna, S., Gaggero, N., Manfredi, A., Casella, L, Gullotti, M., Carrea, G., and Pasta, P. (1990),Biochemistry 29, 10,465–10,468.CrossRefGoogle Scholar
  9. 9.
    Kobayashi, S., Nakano, M., Kimura, T., and Schaap, A. P. (1987),Biochemistry 26, 5019–5022.CrossRefGoogle Scholar
  10. 10.
    Dordick, J. S., Ryu, K., and McEldoon, J. P. (1991),Resources, Conservation and Recycling 5, 195–209.CrossRefGoogle Scholar
  11. 11.
    Smith, K. M., ed. (1975),Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, pp. 12–27, 130-142.Google Scholar
  12. 12.
    Saunders, B. S., Holmes-Siedle, A. G., and Clark, B. P. (1964),Peroxidase Butterworths, Washington, D.C. pp. 112–123.Google Scholar
  13. 13.
    Reichardt, C. (1988),Solvents and Solvent Effects in Organic Chemistry, VCH, New York, pp. 5–77.Google Scholar
  14. 14.
    Streitwieser, A., Jr. and Heathcock, C. H. (1985),Introduction to Organic Chemistry 3rd ed., Macmillan, New York, pp. 168–197.Google Scholar
  15. 15.
    Schmid, R. and McDonagh, A. F. (1975),Ann. N.Y. Acad. Sci. 244, 533–552.CrossRefGoogle Scholar
  16. 16.
    With, T. K. (1968),Bile Pigments, Academic, New York, pp. 101–122.Google Scholar
  17. 17.
    Bagger, S. and Williams, R. J. P. (1971),Acta Chem. Scand. 25, 976–982.Google Scholar
  18. 18.
    Arnao, M. B., Acosta, M., del Rio, J. A., Varon, R., and Garcia-Canovas, F. (1990),Biochim. Biophys. Acta 1041, 43–47.Google Scholar
  19. 19.
    Arnao, M. B., Acosta, M., del Rio, J. A., Varon, R., and Garcia-Canovas, F. (1990),Biochim. Biophys. Acta 1038, 85–89.Google Scholar
  20. 20.
    Nakajima, R. and Yamazaki, I. (1987),J. Biol. Chem. 262, 2576–2581.Google Scholar
  21. 21.
    Rabani, J., Mulac, W. A., and Matheson, M. S. (1965),J. Phys. Chem. 69, 53–70.CrossRefGoogle Scholar
  22. 22.
    McCord, J. M. and Fridovich, I. (1969),J. Biol. Chem. 244, 6049–6055.Google Scholar
  23. 23.
    Anbar, M. and Neta, P. (1967),Int. J. Appl. Radiat, Isot. 18, 493–523.CrossRefGoogle Scholar
  24. 24.
    Lafleur, A. L. and Nakagawa, Y. (1989),Fuel 68, 741–752.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1992

Authors and Affiliations

  • Natalia L. Klyachko
    • 1
  • Alexander M. Klibanov
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridge

Personalised recommendations