Advertisement

Applied Biochemistry and Biotechnology

, Volume 37, Issue 1, pp 19–31 | Cite as

Properties of pectinesterase and endo-d-polygalacturonase coimmobilized in a porous glass support

  • A. Manjón
  • J. L. Iborra
  • C. Romero
  • M. Cánovas
Article

Abstract

Derivatives of pectinesterase and polygalacturonase, both individually immobilized and coimmobilized, were obtained and characterized. Homologous soluble systems were also studied to establish differences between the effect of the immobilization process and the presence of the other enzyme. Immobilization or coimmobilization did not change the optima pH or temperature for the enzymes. However, optimum ionic strength was displaced toward higher values for immobilized pectinesterase, while for polygalacturonase immobilization resulted in a wider range for activity.K m value remained nearly unchanged for pectinesterase, and decreased for polygalacturonase. TheV m value decreased with the immobilization process for the two enzymes, except for polygalacturonase immobilization in presence of pectinesterase. Soluble pectinesterase activity showed a competitive inhibition by polygalacturonic acid (Ki = 0.44 mg/mL). Either immobilization or presence of polygalacturonase rendered the enzyme insensitive to the inhibitory effect. Thermal stability of pectinesterase was not improved after immobilization. On the contrary, the thermal stability of endo-D-polygalacturonase was improved slightly by presence of pectinesterase, and in a greater extent by immobilization. Individually immobilized and coimmobilized pectinesterase activities kept 90 and 60%, respectively, of their initial values after more than one year stored at 3-5 °C. The two endo-D-polygalacturonase derivatives showed the same activity decay pattern along 10 mo storage at 3-5 °C. The two immobilized pectinesterase derivatives showed similar operational stabilities during continuous operation. The presence of pectinesterase remarkably increased the operational stability of the immobilized endo-D-poly galacturonase.

Index Entries

Pectic enzymes pectinesterase endo-D-poly-galacturonase pectin degradation bienzyme coimmobilized systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rexová-Benková, L. and Markovic, O. (1978),Adv. Carbohydr. Chem. 33, 323–383.CrossRefGoogle Scholar
  2. 2.
    Dahodwala, S., Humphrey, A., and Weibel, M. (1974),J. Food Sci. 45, 1203–1207.Google Scholar
  3. 3.
    Hultin, H. O.. (1974),J. Food Sci. 39, 647–652.CrossRefGoogle Scholar
  4. 4.
    Hultin, H. O.. (1983),Food Technol. 10, 66–82.Google Scholar
  5. 5.
    Lozano, P., Manjón, A., Romojaro, F., Cánovas, M., and Iborra, J. L. (1987),Biotechnol. Lett. 9, 875–880.CrossRefGoogle Scholar
  6. 6.
    Lozano, P., Manjón, A., Iborra, J. L., Cánovas, M., and Romojaro, F. (1990),Enzyme Microb. Technol. 12, 499–505.CrossRefGoogle Scholar
  7. 7.
    Mosbach, K., and Mattiason, B. (1976),Methods Enzymol. 44, 453–477.Google Scholar
  8. 8.
    Koch-Schmidt, A. C., Mattiason, B., and Mosbach, K. (1977),Eur. J. Biochem. 81, 71–78.CrossRefGoogle Scholar
  9. 9.
    Romero, C, Sánchez, S., Manjón, A., and Iborra, J. L. (1989),Enzyme Microb. Technol. 11, 837–843.CrossRefGoogle Scholar
  10. 10.
    Romero, C, Manjón, A., and Iborra, J. L. (1988),Biotechnol. Lett. 10, 97–100.CrossRefGoogle Scholar
  11. 11.
    Romero, C, Manjón, A., and Iborra, J. L. (1987), inProceedings of the 4th European Congress of Biotechnology, vol. 2, Neijassel, O. M., Vander Meer, R. R., and Luyben, K. Ch. A. M., eds., Elsevier, Amsterdam, The Netherlands, pp.48–51.Google Scholar
  12. 12.
    Manjón, A., Llorca, F. I., Bonete, M. J., Bastida, J., and Iborra, J. L. (1985),Process Biochem. 20, 17–22.Google Scholar
  13. 13.
    Jansen, E. F., MacDonnell, L. R., and Jang, R. (1945),Arch. Biochem. 8, 97–112.Google Scholar
  14. 14.
    Liu, Y. K. and Luh, B. S.. (1978),J. Food Sci. 43, 721–726.CrossRefGoogle Scholar
  15. 15.
    Hartree, E. (1972),Anal. Biochem. 48, 422–427.CrossRefGoogle Scholar
  16. 16.
    Markovic, O. and Machová, E. (1985),Collect. Czech. Chem. Commun. 50, 2021–2027.CrossRefGoogle Scholar
  17. 17.
    Vijayalakshmi, M., Janmonille, R., Picque, D., and Segard, E. (1979),Food Process. Eng. 2, 152–158.Google Scholar
  18. 18.
    Liu, Y. K. and Luh, B. S. (1978),Agric. Biol. Chem. 43, 721–726.Google Scholar
  19. 19.
    Pressey, R. and Avants, J. K. (1977),Plant Physiol. 60, 548–553.Google Scholar
  20. 20.
    Sánchez, J., Guiraud, J. P., and Galzy, P. (1984),Appl. Microbiol. Biotechnol. 20, 262–267.CrossRefGoogle Scholar
  21. 21.
    Sakai, T., Okushima, M., and Yoshitake, S. (1984),Agric. Biol. Chem. 48, 1951–1961.Google Scholar
  22. 22.
    Sakai, T., and Takaoka, A. (1985),Agric. Biol. Chem. 49, 449–458.Google Scholar
  23. 23.
    Phaff, H. J. (1966),Methods Enzymol. 8, 636–641.Google Scholar
  24. 24.
    Manachini, P. L., Fortina, M. G., and Pauni, C. (1987),Biotechnol. Lett. 9, 219–224.CrossRefGoogle Scholar
  25. 25.
    Pallman, H., Matus, J, Deuel, H., and Weber, F. (1946),Rec. trav. chim. Pays Bas. 69, 633–636.Google Scholar
  26. 26.
    Lourenco, J. E. and Catutani, A. T. (1984),J. Sci. Food Agric. 35, 1120–1127.CrossRefGoogle Scholar
  27. 27.
    Ko, Y. H. and Park, K. H. (1984),Korean J. Food Sci. Technol. 16, 235–241.Google Scholar
  28. 28.
    Lineweaver, H. and Ballom, G. A.(1945),Arch. Biochem. 6, 373–376.Google Scholar
  29. 29.
    Tarí, M. (1986), Ph.D. Diss., University of Murcia, Spain.Google Scholar
  30. 30.
    Borrego, F., Tarí, M., Manjón, A., and Iborra, J. L. (1989),Appl. Biochem. Biotechnol. 22, 129–140.Google Scholar
  31. 31.
    Yoshihara, O., Matsuo, T., and Kayi, A. (1977),Agric. Biol. Chem. 41, 2335–2341.Google Scholar
  32. 32.
    Nakagawa, H., Yanagawa, Y., and Takehama, H. (1970),Agric. Biol. Chem. 34, 998–1003.Google Scholar
  33. 33.
    Engasser, J. M. and Horvath, C. (1973),J. Theor. Biol. 42, 137–155.CrossRefGoogle Scholar
  34. 34.
    Omelková, J., Rexová-Benková, L., Kubánek, V., and Veruovic, B. (1985),Biotechnol. Lett. 7, 99–104.CrossRefGoogle Scholar
  35. 35.
    Rexová-Benková, L., Omelková, J., and Kubánek, V. (1982),Collect. Czech. Chem. Commun. 47, 2716–2723.Google Scholar
  36. 36.
    Markovic, O., Slézarik, A., and Labudová, I. (1985),FEMS Microbiol. Lett. 27, 267–271.CrossRefGoogle Scholar
  37. 37.
    Rexová-Benková, L., Mracková, M., and Babor, K. (1980),Collect. Czech. Chem. Commun. 45, 163–168.Google Scholar
  38. 38.
    Rexová-Benková, L., Omelková, J., Veruovic, B., and Kubánek, V. (1983),Biotechnol. Lett. 5, 737–742.CrossRefGoogle Scholar
  39. 39.
    Kminková, M., and Kucera, J. (1983),Enzyme Microb. Technol. 5, 204–208.CrossRefGoogle Scholar

Copyright information

© The Humana Press Inc 1992

Authors and Affiliations

  • A. Manjón
    • 1
  • J. L. Iborra
    • 1
  • C. Romero
    • 1
  • M. Cánovas
    • 1
  1. 1.Department of Biochemistry and Molecular Biology B and Immunology, Faculty of ChemistryUniversity of MurciaurciaSpain

Personalised recommendations