Applied Biochemistry and Biotechnology

, Volume 73, Issue 1, pp 19–28 | Cite as

Conformational stability and antibody response to the 18kda heat- shock protein formulated into different vehicles

  • M. H. B. Costa
  • O. A. Sant’Anna
  • P. S. de Araujo
  • R. A. Sato
  • W. Quintilio
  • L. V. N. Silva
  • C. R. T Matos
  • I. Raw
Original Articles


Protein stability is one of the most important obstacles for successful formulation in the development of new-generation vaccines. Here, the 18kDa heat-shock protein (18kDa-hsp) was chemically modified though conjugation with bovine serum albumin or by esterification with N-hydroxysuccinimide ester of palmitic acid. The biologically active conformation of the protein was preserved after chemical modification. The immune responses to the recombinant 18kDa-hsp fromMycobacterium leprae were studied in different presentations: free, copolymerized with bovine serum albumin in aggregates (18kDa-hsp-BSA), and either surface linked to liposomes or entrapped into liposomes. Measuring the antibody production of immunized genetically selected mice has compared the adjuvant effects of liposomes and proteic copolymer. Among the two liposome preparations, the strongest response was obtained with the surface-exposed antigen-liposomes. The copolymer 18kDa-hsp-BSA conferred a high titer of antibody in injected mice, and persisted 70 d after immunization. This approach should prove very useful for designing more effective vaccines by using 18kDa-hsp as carrier protein.

Index Entries

Protein stability protein carrier heat-shock protein vaccine adjuvants supramolecular aggregates liposomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cease, K. and Berzofsky, J. A. (1994),Ann. Rev. Immunol. 12, 923–989.CrossRefGoogle Scholar
  2. 2.
    Berzofsky, J. A. (1991),FASEB J. 5, 2412–2418.Google Scholar
  3. 3.
    Ellis, R. W. (1990), inNew Generation Vaccines. Woodrow, G. C. and Levine, M. M., eds. Marcel Dekker, New York, pp. 439–447.Google Scholar
  4. 4.
    Mortimer, E. A., Kimura, M., Cherry, J. D., Kuno-Sakai, H., Stout, M. G., Dekker, C. L., Hayashi, R., Miyamoto, Y., Scott, J. V., Aoyama, T., Isomura, S., Iwata, T., Kamiya, H., Kato, T., Noya, J., Suzuki, E., Takeuchi, Y., and Yamaoka, H. (1990),Am. J. Dis. Child. 144, 899–904.Google Scholar
  5. 5.
    Storsaeter, J. and Olin, P. (1992),Vaccine 10, 142,143.CrossRefGoogle Scholar
  6. 6.
    Black, S. B., Shinefield, H. R., Lampert, D., Fireman, B., Hiatt, R. A., Polen, M., Vittinghoff, E. and the Northern California Kaiser Permanente Vaccine Study Center Pediatrics Group (1991),Pediatr. Infect. Dis. J. 10, 92–96.CrossRefGoogle Scholar
  7. 7.
    Chen, R. T., Rastogi, S. C., Mullen, J. R., Hayes, S. W., Cochi, S. L., Donlon, J. A., and Wassilak, S. G. (1994),Vaccine 12, 542–550.CrossRefGoogle Scholar
  8. 8.
    Perkus, M. E., Taylor, J., Tartaglia, J., Pincus, S., Kauffman, E. B., Tine, J. A., and Paoletti, E. (1995), inCombined Vaccines and Simultaneous Administration. Current Issues and Perspectives, Ann. NY Acad. Sci. 754, 223–233.Google Scholar
  9. 9.
    Morris, W., Steihoff, M. C., and Russel, P. K. (1994),Vaccine 12, 5–11.CrossRefGoogle Scholar
  10. 10.
    Kuo, J., Douglas, M., Reee, H. K., and Lindberg, A. A. (1995),Infec. Immun. 63, 2706–2713.Google Scholar
  11. 11.
    Dintziz, R. Z. (1994), inDevelopment and Clinical Uses of Haemophilus B Conjugate Vaccines. Ellis, R. W. and Granoff. Marcel Dekker, New York, pp. 111–127.Google Scholar
  12. 12.
    Fattom, A., Li, X., and Cho, L. H. (1995),Vaccine 13, 1288–1293.CrossRefGoogle Scholar
  13. 13.
    Rappuoli, R. (1990), inNew Generation Vaccines, Woodrow, G. C. and Levine, M. M., eds. Marcel Dekker, New York, pp. 251–268.Google Scholar
  14. 14.
    Barrios, C., Lussow, A. R., Embden, J. V., Zee, R., Rappuoli, R., Constantino, P., Louis, J. A., Lambert, P. H., and Giudice, G. D. (1992),Eur.J. Immunol. 22, 1365–1372.CrossRefGoogle Scholar
  15. 15.
    Giudice, G. D. (1994),Experientia 50, 1061–1066.CrossRefGoogle Scholar
  16. 16.
    Lamb, F. I., Singh, N. B., and Colston, M. J. (1992),J. Immunol. 144, 1922–1925.Google Scholar
  17. 17.
    Heike, M., Noll, B., and Büschenfelde, K-H. M. (1996),J. Leukocyte Biol. 60, 153–158.Google Scholar
  18. 18.
    Doherty, T. M., Booth, R. J., Love, S. G., Gibson, J. J., Hardinng, D. R. K., and Watson, J. D. (1989),J. Immunol. 142, 1691–1695.Google Scholar
  19. 19.
    Harris, D. P., Bäckström, B. T., Booth, R. J., Love, S. G., Harding, D. R., and Watson, J. D. (1989),J. Immunol. 143, 2006–2012.Google Scholar
  20. 20.
    Costa, M. H. B., Ueda, C. M. P. M., Sato, R. A., Liberman, C., and Raw, I. (1995),Biotech. Techniques 9, 527–532.CrossRefGoogle Scholar
  21. 21.
    Sato, R. A. and Costa, M. H. B. (1996),Biotech. Lett. 18, 275–280.Google Scholar
  22. 22.
    Allison, A. C. and Gregoriadis, G. (1974),Nature 52, 252–262.CrossRefGoogle Scholar
  23. 23.
    Gregoriadis, G., Davis, D., and Davies, A. (1987),Vaccine 5, 145–151.CrossRefGoogle Scholar
  24. 24.
    Gregoriadis, G. (1996),J. Lipos. Reas. 6, 281–287.CrossRefGoogle Scholar
  25. 25.
    Biozzi, G., Mouton, D., Sant’Anna, O. A., Passos, H. C., Gennari, M., Reis, M. H., Ferreira, V. C. A., Heumann, A. M., Bouthillier, Y., Ibañez, O. M., Stiffel, C., and Siqueira, M. (1979),Curr. Top. Microbiol. Immunol. 85, 31–98.Google Scholar
  26. 26.
    Mouton, D., Siqueira, M., Sant’Anna, O. A., Bouthillier, Y., Ibañez, O., Ferreira, V. C. A., Mevel, J. C., Reis, M. H., Piatti, R. M., Stiffel, C., and Biozzi, G. (1988),Eur. J. Immunol. 18, 41–17.CrossRefGoogle Scholar
  27. 27.
    New, R. R. C. (1990), inLiposomes, A Practical Approach, IRL Press, New York, pp. 33–61.Google Scholar
  28. 28.
    VanRooijen, N. (1990),Adv. Biotech. Proc. 13, 255–279.Google Scholar
  29. 29.
    Yi, P. N. and MacDonald, R. C. (1973),Chem. Phys. Lipids 11, 114–134.CrossRefGoogle Scholar
  30. 30.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985),Anal. Biochem. 150, 76–85.CrossRefGoogle Scholar
  31. 31.
    Rouser, G., Fleischer, S. L., and Yamamoto, A. (1970),Lipids 5, 494–496.CrossRefGoogle Scholar
  32. 32.
    Engvall, E. (1980),Meth. Enzymol. 70, 419–455.CrossRefGoogle Scholar
  33. 33.
    Lee, T. K., Sokoloski, T. D., and Royer, G. P. (1981),Science 213, 233,234.CrossRefGoogle Scholar
  34. 34.
    Shahum, E. and Thérien, H. M. (1994),Vaccine 12, 1125–1131.CrossRefGoogle Scholar
  35. 35.
    Leserman, L. D., Machy, P., and Barbet, J. (1984). inLiposome Technology, vol. 3 Gregoriadis, G., ed. CRC Press, Boca Raton, FL, p. 29.Google Scholar
  36. 36.
    Martin, F. J., Heath, T. D., and New, R. R. C. (1990), inLiposomes, A Practical Approach, New, R. R. C., ed. IRL Press, New York, pp. 20–30.Google Scholar
  37. 37.
    Booth, R. J., Harris, D. P., Love, J. M., and Watson, J. D. (1988),J. Immunol. 140, 597–601.Google Scholar
  38. 38.
    Lapidot, Y., Rappoport, S., and Wolman, Y. (1967),J. Lipid Res. 8, 142–145.Google Scholar
  39. 39.
    Monsan, Y., Puzo, G., and Marzaguil, H. (1975),Biochimie 57, 1281–1292.CrossRefGoogle Scholar
  40. 40.
    Thérien, H-M., Lair, D., and Shahum, E. (1990),Vaccine 8, 558–562.CrossRefGoogle Scholar
  41. 41.
    Chandrasekhar, U., Sinha, S., Bhagat, R., Sinha, V. B., and Srivastava, B. S. (1994),Vaccine 12, 1385–1388.CrossRefGoogle Scholar
  42. 42.
    Sprent, J. (1994),Cell 76, 315–322.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • M. H. B. Costa
    • 1
  • O. A. Sant’Anna
    • 2
  • P. S. de Araujo
    • 3
  • R. A. Sato
    • 1
  • W. Quintilio
    • 1
  • L. V. N. Silva
    • 1
  • C. R. T Matos
    • 1
  • I. Raw
    • 1
  1. 1.Laboratório de Microesferas e lipossomos-Centro de BiotecnologiaAvenida Vital BrasilButantan
  2. 2.Laboratório de Imunogenética-Instituto ButantanAvenida Vital BrasilButantan
  3. 3.Departamento de BioquímicaInstituto de QuímicaUSPBrasil

Personalised recommendations