Skip to main content
Log in

Transboundary extremal length

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We introduce two basic notions, ‘transboundary extremal length’ and ‘fat sets’, and apply these concepts to the theory of conformal uniformization of multiply connected planar domains. A new short proof is given to Koebe's conjecture in the countable case: every planar domain with countably many boundary components is conformally equivalent to a circle domain. This theorem is further generalized in two direction. We show that the same statement is true for a wide class of domains with uncountably many boundary components, in particular for domains bounded byK-quasicircles and points. Moreover, these domains admit more general uniformizations. For example, every circle domain is conformally equivalent to a domain whose complementary components are heart-shapes and points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors,Quasiconformal reflections, Acta Math.109 (1963), 291–301.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. Astala,Area distortion of quasiconformal mappings, Acta Math.173 (1994), 37–60.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Bonnesen and W. Fenchel,Theorie der konvexen Körper, Springer-Verlag, Berlin, 1934.

    MATH  Google Scholar 

  4. M. Brandt,Ein Abbildungssatz für endlich-vielfach zusammenhängende Gebiete, Bull. de la Soc. des Sc. et des Lettr. de ŁódźXXX, 4 (1980).

  5. J. W. Cannon,The combinatorial Reimann mapping theorem, Acta Math.173 (1994), 155–234.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. W. Cannon, W. J. Floyd and W. R. Parry,Squaring rectangles: the finite Riemann mapping theorem, inThe Mathematical Heritage of Wilhelm Magnus—Groups, Geometry and Special Functions, Contemporary Mathematics Series, Vol. 169, Amer. Math. Soc., 1994, pp. 133–212.

  7. R. J. Duffin,The extremal length of a network, J. Math. Anal. Appl.5 (1962), 200–215.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. L. Fernández, J. Heinonen and O. Martio,Quasilines and conformal mappings, J. Analyse Math.52 (1989), 117–132.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. W. Gehring,Characteristic Properties of Quasidisks, Les Presses de L'Université de Montreal, Montreal, 1982.

    MATH  Google Scholar 

  10. G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, Transl. Math. Monographs, Vol. 26, Amer. Math. Soc., Providence, R. I., 1967, 676 pp.

    Google Scholar 

  11. A. N. Harrington,Conformal mappings onto domains with arbitrarily specified boundary shapes, J. Analyse Math.41 (1982), 39–53.

    MATH  MathSciNet  Google Scholar 

  12. Z.-X. He and O. Schramm,Fixed points, Koebe uniformization and circle packings, Ann. of Math.137 (1993), 369–406.

    Article  MathSciNet  Google Scholar 

  13. Z.-X. He and O. Schramm,Koebe uniformization for ‘almost circle domains’, Amer. J. Math. (to appear).

  14. D. A. Herron and P. Koskela,Uniform Sobolev extension and quasiconformal circle domains, J. Analyse. Math.57 (1991), 172–202.

    MATH  MathSciNet  Google Scholar 

  15. D. A. Herron and P. Koskela,Quasiextremal distance domains and conformal mappings onto circle domains, Complex Variables Theory and Applications15 (1990), 167–179.

    MATH  MathSciNet  Google Scholar 

  16. J. L. Kelley,General Topology, Springer-Verlag, Berlin, 1975, 282 pp.

    MATH  Google Scholar 

  17. P. Koebe,Uber die Uniformisierung beliebiger analytischer Kurven III, Nachr. Ges Wiss. Gott. (1908), 337–358.

  18. O. Lehto and K. I. Virtanen,Quasiconformal Mappings in the Plane, Springer, Berlin, 1973. 258 pp.

    MATH  Google Scholar 

  19. O. Schramm,Square tilings with prescribed combinatorics, Israel J. Math.84 (1993), 97–118.

    Article  MATH  MathSciNet  Google Scholar 

  20. O. Schramm,Conformal uniformization and packings, Israel J. Math.93 (1996), 399–428.

    Article  MATH  MathSciNet  Google Scholar 

  21. O. Schramm,Extremal metrics for transboundary extremal length, in preparation.

  22. R. J. Sibner,‘Uniformizations’ of infinitely connected domains, inAdvances in the Theory of Riemann Surfaces, Proc. of the 1969 Stony Brook Conf., Ann. of Math. Studies, Princeton University Press, 1971, pp. 407–419.

  23. R. J. Sibner,Remarks on the Koebe Kreisnormierungsproblem, Comm. Math. Helv.43 (1968), 289–295.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Incumbent of the William Z. and Eda Bess Novick Career Development Chair. Supported by NSF grant DMS-9112150.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, O. Transboundary extremal length. J. Anal. Math. 66, 307–329 (1995). https://doi.org/10.1007/BF02788827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788827

Keywords

Navigation