Skip to main content
Log in

Planar Poincaré domains: Geometry and Steiner symmetrization

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We determine geometric necessary and sufficient conditions on a class of strip-like planar domains in order for them to satisfy the Poincaré inequality with exponentp, where 1≤p<∞. The characterization uses hyperbolic geodesics in the domain and a metric which depends onp and generalizes the quasi-hyperbolic metric in the casep=2. As an application, we show that the Poincaré inequality is preserved under Steiner symmetrization of these domains but not in general.

We also show that our geometric condition is preserved under bounded length distortion (BLD) mappings of a domain and thus extend the class of domains for which our characterization is valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ada] R. A. Adams,Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  • [Ahl] L. V. Ahlfors,Conformal Invariants, McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  • [Bae] A. Baernstein II,A unified, approach to symmetrization, preprint.

  • [DeLi] J. Deny and J. L. Lions,Les Espaces du Type de Beppo Levi, Ann. Inst. Fourier5 (1953–54), 305–370.

    MathSciNet  Google Scholar 

  • [EvHa r] W. D. Evans and D. J. Harris,Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. (3)54 (1987), 141–175.

    Article  MATH  MathSciNet  Google Scholar 

  • [Geh] F. W. Gehring,Injectivity of local quasi-isometries, Comment. Math. Helv.57 (1982), 202–220.

    Article  MATH  MathSciNet  Google Scholar 

  • [GeHa] F. W. Gehring and W. K. Hayman,An inequality in the theory of conformal mapping, J. Math. Pures Appl.41 (1962), 353–361.

    MATH  MathSciNet  Google Scholar 

  • [GePa] F. W. Gehring and B. P. Palka,Quasiconformally homogeneous domains, J. Analyse Math.30 (1976), 172–199.

    Article  MATH  MathSciNet  Google Scholar 

  • [GilTr] D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 1983.

    MATH  Google Scholar 

  • [JeKe] D. S. Jerison and C. E. Kenig,Hardy Spaces, A and singular integrals on chord-arc domains, Math. Scand.50 (1982), 221–247.

    MATH  MathSciNet  Google Scholar 

  • [Kaw] B. Kawohl,Rearrangements and Convexity of Level Sets in PDE, Springer-Verlag LNM 1150, Berlin-Heidelberg, 1985.

  • [Ma r] O. Martio,John domains, bilipschitz balls and the Poincaré inequality, Rev. Roumaine Math. Pures Appl.33 (1988), 107–112.

    MathSciNet  MATH  Google Scholar 

  • [Maz68] V. G. Maz'ja,On Neumann's problem in domains with nonregular boundaries, Siberian Math. J.9 (1968), 990–1012.

    MathSciNet  Google Scholar 

  • [Maz85] V. G. Maz'ja,Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg, 1985.

    MATH  Google Scholar 

  • [MySer] N. Meyers and J. Serrin,H=W, Proc. Natl. Acad. Sci. U.S.A.51 (1964), 1055–1056.

    Article  MATH  MathSciNet  Google Scholar 

  • [Pól] G. Pólya,Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Q. Appl. Math.6 (1948), 267–277.

    MATH  Google Scholar 

  • [PóSz] G. Pólya and G. Szegö,Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1952.

    Google Scholar 

  • [Pom75] Ch. Pommerenke,Univalent Functions, Vanderhoeck & Ruprecht, Göttingen, 1975.

    MATH  Google Scholar 

  • [Pom92] Ch. Pommerenke,Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg, 1992.

    MATH  Google Scholar 

  • [SmSt87] W. Smith and D. A. Stegenga,Poincaré domains in the plane, inComplex Analysis, Joensuu-Proceedings of R. Nevalinna Colloquium, Springer-Verlag Lecture Notes in Mathematics #1351, 1987, pp. 312–327.

  • [SmSt90] W. Smith and D. A. Stegenga,Hölder domains and Poincaré domains, Trans. Amer. Math. Soc.319 (1990), 67–100.

    Article  MATH  MathSciNet  Google Scholar 

  • [Sta] A. Stanoyevitch,Products of Poincaré domains, Proc. Amer. Math. Soc.117 (1993), 79–87.

    Article  MATH  MathSciNet  Google Scholar 

  • [StaSt] A. Stanoyevitch and D. A. Stegenga,The geometry of Poincaré disks, Complex Variables Theory Appl.24 (1994) 249–266.

    MATH  MathSciNet  Google Scholar 

  • [Ste] E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  • [Tuk80] P. Tukia,The planar Schöenflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. AI Math.5 (1980), 49–72.

    MathSciNet  MATH  Google Scholar 

  • [Tuk81] P. Tukia,Extensions of quasisymmetric and Lipschitz embeddings of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. AI Math.6 (1981), 89–94.

    MathSciNet  MATH  Google Scholar 

  • [Väi] J. Väisälä,Homeomorphisms of bounded length distortion, Ann. Acad. Sci. Fenn. Ser. AI Math.12 (1987), 303–312.

    MATH  Google Scholar 

  • [Zie] W. P. Ziemer,Weakly Differentiable Functions, Springer-Verlag GTM#120, New York, 1989.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is supported in part by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, W., Stanoyevitch, A. & Stegenga, D.A. Planar Poincaré domains: Geometry and Steiner symmetrization. J. Anal. Math. 66, 137–183 (1995). https://doi.org/10.1007/BF02788821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788821

Keywords

Navigation