Skip to main content
Log in

Prediction of folding stability and degradability of thede novo designed protein MB-1 in cow rumen

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The authors have recently reported on the design of a protein (MB-1) enriched in methionine, threonine, lysine, and leucine. The protein is intended to be produced by rumen bacteria, in a way that would provide high producing lactating cows with limiting amino acids. In this report, MB-1 stability in the rumen is assessed, i.e., where the protein might be found after cell lysis or after being secreted by rumen bacteria. Current in vitro methods used to predict proteolytic degradability in the rumen were used for MB-1, as well as other natural proteins for comparison. MB-1 was found to be more susceptible to degradation than cytochrome c and ribonuclease A. Data indicate that MB-1 will be rapidly degraded if exposed to the rumen environment without protection. The contribution of folding stability to proteolytic stability was also examined. Rumen liquor components were selected to formulate a solution compatible with constraints of thermal denaturation studies. Denaturation curves show that the natural proteins were folded at rumen temperature. The MB-1 denaturation curves indicated that MB-1 does not unfold in a cooperative transition when heated from 20 to 70‡C. This suggests that MB-1 structure may be progressively modified as temperature increases, and that a continuum of conformations are available to MB-1. At 39‡C, a significant (50%) portion of MB-1 molecules had their tertiary structure unfolded, contributing to proteolytic degradability. Despite the unusual constraints used in MB-1 design (i.e., a maximized content in selected essential amino acids), results show that MB-1 has structural properties similar to previously reportedde novo designed proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hungate, R. E. (1966), inThe Rumen and its Microbes, Academic Press, New York, NY, pp. 194–206.

    Google Scholar 

  2. Schwab, C. G. (1995), inAnimal Science Research and Development: Moving Toward a New Century, Ivan, M., ed., CFAR Contribution no. 2321, Ministry of Supplies and Services Canada (ISBN 0-662-23589-4), Ottawa, ON, pp. 161–175.

  3. Rulquin, H., Vérité, R., Guinard, G., and Pisulewski, P. M. (1995), inAnimal Science Research and Development: Moving Toward a New Century, Ivan, M., ed., CFAR Contribution no. 2321, Ministry of Supplies and Services Canada (ISBN 0-662-23589-4), Ottawa, ON, pp. 143–160.

  4. Munneke, L., Schingoethe, D.J., and Casper, D. P. (1991),J. Dairy Sci. 74, 227–233.

    CAS  Google Scholar 

  5. King, K. J., Huber, J. T., Sadik, M., Bergen, W. G., Grant, A. L., and King, V. L. (1990),J. Dairy Sci. 73, 3208–3216.

    CAS  Google Scholar 

  6. Oldham, J. D., Nytes, A. J., Satter, L. D., and Jorgenson, N. S. (1985),Brit. J. Nutr. 53, 337–346.

    Article  CAS  Google Scholar 

  7. Orskov, E. R., Reid, G. W., and Tair, C. A. G. (1987),Anim. Prod. 45, 345–348.

    Article  Google Scholar 

  8. Faldet, M. A. and Satter, L. D. (1991),J. Dairy Sci. 74, 3047–3054.

    CAS  Google Scholar 

  9. Clark, J. H., Klusmeyer, T. H., and Cameron, M. R. (1992),J. Dairy Sci. 75, 2304–2323.

    CAS  Google Scholar 

  10. Broderick, G. A. and Clayton, M. K. (1992),Brit. J. Nutr. 67, 27–42.

    Article  CAS  Google Scholar 

  11. Robinson, P. H., Fredeen, A. H., Chalupa, W., Julien, W. E., Sao, H., and Suzuki, H. (1995),J. Dairy Sci. 78, 582–594.

    CAS  Google Scholar 

  12. Chalupa, W. (1975),J. Dairy Sci. 58, 1198–1218.

    CAS  Google Scholar 

  13. Stern, M. D., Santos, K. A., and Satter, L. D. (1985),J. Dairy Sci. 68, 45–56.

    CAS  Google Scholar 

  14. Ashes, J. R., Gulati, S. K., and Scott, T. W. (1995), inAnimal Science Research and Development: Moving Toward a New Century, Ivan, M., ed., CFAR Contribution no. 2321, Ministry of Supplies and Services Canada (ISBN 0-662-23589-4), Ottawa, ON, pp. 177–185.

  15. Beauregard, M., Dupont, C., Teather, R. M., and Hefford, M. A. (1995),Bio/Technology 13, 974–981.

    Article  CAS  Google Scholar 

  16. Jaynes, J. M., Langridge, P., Anderson, K., Bond, C., Snads, D., Newman, C. W., and Newman, R. (1985),Appl. Microbiol. Biotech. 21, 200–205.

    Article  CAS  Google Scholar 

  17. Dyer, J. M., Nalson, J. W., and Murai, N. (1993),J. Prot. Chem. 12, 545–560.

    Article  CAS  Google Scholar 

  18. Kangas, T. T., Cooney, C. L., and Gomez, R. F. (1982),Appl. Environ. Microbiol. 43, 629–635.

    CAS  Google Scholar 

  19. Beauregard, M., Hefford, M. A., and Teather, R. M. (1994),BioTechniques 16, 832–839.

    Google Scholar 

  20. Boebel, K. P. and Baker, D. H. (1982),J. Nutr. 112, 1130–1132.

    CAS  Google Scholar 

  21. Maldague, P., Kishore, B. K., Lambricht, P., Ibrahim, S., Laurent, G., and Tulkens, P. M. (1991), inNephrotoxicity: Mechanisms, Early Diagnosis, and Therapeutic Management, Bach, P. J., ed., Marcel Dekker, New York, pp. 131–136.

    Google Scholar 

  22. Roe, M. B., Chase, L. E., and Sniffen, C. J. (1991),J. Dairy Sci. 74, 1632–1640.

    CAS  Google Scholar 

  23. Nocek, J. E., Herbein, J. H., and Polan, C. E. (1983),J. Dairy Sci. 66, 1663–1667.

    CAS  Google Scholar 

  24. Krisnamoorthy, U., Sniffen, C. J., Stern, M. D., and Van Soest, P. J. (1983),Brit. J. Nutr. 50, 555–568.

    Article  Google Scholar 

  25. Poos-Floyd, M., Klopfenstein, T., and Britton, R. A. (1985),J. Dairy Sci. 68, 829–839.

    Article  CAS  Google Scholar 

  26. Arnold, F. H. and Zhang, J.-H. (1994),Trends Biotech. 12, 189–192.

    Article  CAS  Google Scholar 

  27. Goldberg, A. L., Kowit, J., Eltinger, J., and Klemes, Y. (1978), inProtein Turnover and Lysosome Function, Segal, H. L. and Doyle, D. J., (eds.), Academic, New York, pp. 171–196.

    Google Scholar 

  28. Goldberg, A. L. and Goff, S. A. (1986), inMaximizing Gene Expression, Reznikoff, W. and Gold, L., eds., Butterworths, Stoneham, MA, pp. 287–314.

    Google Scholar 

  29. Parsell, D. A. and Sauer, R. T. (1989),J. Biol. Chem. 264, 7590–7595.

    CAS  Google Scholar 

  30. Liao, H. H. (1993),Enzyme Microb. Technol. 15, 286–292.

    Article  CAS  Google Scholar 

  31. Schagger, H. and Von Jagow, G. (1987),Anal. Biochem. 166, 368–379.

    Article  CAS  Google Scholar 

  32. Stoscheck, C. M. (1990), inProtein Purification, Deutscher, M. P., ed., Academic, San Diego, CA, pp. 52–64.

    Google Scholar 

  33. Singer, S. J. (1962),Adv. Prot. Chem. 17, 1–68.

    CAS  Google Scholar 

  34. Dill, K. (1990),Biochemistry 29, 7133–7155.

    Article  CAS  Google Scholar 

  35. Creighton, T. E. (1993), inProteins: Structure and Molecular Properties, Freeman, New York, p. 293.

    Google Scholar 

  36. Stewart, C. S. (1975),J. Gen. Micro. 89, 319–326.

    Google Scholar 

  37. Pace, C. N., Shirley, B. A., and Thomson, J. A. (1989), inProtein Structure-A Practical Approach, Creighton, T. E., ed., IRL, Oxford, UK, pp. 311–337.

    Google Scholar 

  38. Privalov, P. L. (1979),Adv. Prot. Chem. 33, 167–241.

    Article  CAS  Google Scholar 

  39. Stellwagen, E. and Wilgus, H. (1978),Nature 275, 342–343.

    Article  CAS  Google Scholar 

  40. Fezoui, Y., Weaver, D. L., and Osterhout, J. J. (1995),Protein Sci. 4, 286–295.

    Article  CAS  Google Scholar 

  41. Kuroda, Y. (1995),Prot. Engng. 8, 97–101.

    Article  CAS  Google Scholar 

  42. Hecht, M. H., Richardson, J. S., Richardson, D. C., and Ogden, R. C. (1990),Science 249, 884–891.

    Article  CAS  Google Scholar 

  43. Imoto, T., Fukuda, K., and Yagashita, K. (1974),Biochim. Biophys. Acta 336, 264–269.

    CAS  Google Scholar 

  44. Mahadevan, S., Erfle, J. D., and Sauer, F. D. (1980),Anim. Sci. 50, 723–728.

    CAS  Google Scholar 

  45. Spencer, D., Higgins, T. J. V., Freer, M., Dove, H., and Coombe, J. B. (1988),Brit.J. Nutr. 60, 241–247.

    Article  CAS  Google Scholar 

  46. Schein, C. H. (1989),Bio/Techonology 7, 1141–1149.

    CAS  Google Scholar 

  47. Yang, H.-J., and Tsou, C.-L. (1995),Biochem. J. 305, 379–384.

    CAS  Google Scholar 

  48. Huang, X. L., Catignani, G. L., and Swaisgood, H. E. (1994),J. Agri. Food Chem. 42, 1276–1280.

    Article  CAS  Google Scholar 

  49. Hancock, K. R., Ealing, P. M., and White, D. W. R. (1994),Brit.J. Nutr. 72, 855–863.

    Article  CAS  Google Scholar 

  50. Lutgring, R. and Chmielewski J. (1994),J. Am. Chem. Soc. 116, 6451,6452.

    Article  CAS  Google Scholar 

  51. Tanaka, T., Kuroda, Y., Kimura, H., Kidokoro, S.-I, and Nakamura, H. (1994),Prot. Eng. 7, 969–976.

    Article  CAS  Google Scholar 

  52. Handel, T. M., Williams, S. A., and DeGrado, W. F. (1993),Science 261, 879–885.

    Article  CAS  Google Scholar 

  53. Raleigh, D. P. and DeGrado, W. F. (1992),J. Am. Chem. Soc. 114, 10,079–10,081.

    Article  CAS  Google Scholar 

  54. Beauregard, M., Goraj, K., Goffin, V., Heremans, K., Goormaghtigh, E., Ruysschaert, J. M., and Martial, A. (1991),Prot. Eng. 4, 745–749.

    Article  CAS  Google Scholar 

  55. Sasaki, T. and Lieberman, M. (1993),Tetrahedron 49, 3677–3689.

    Article  CAS  Google Scholar 

  56. Betz, S. F., Raleigh, D. P., and DeGrado, W. F. (1993),Curr. Opin. Struct. Biol. 3, 601–610.

    Article  CAS  Google Scholar 

  57. Goraj, K., Renard, A., and Martial, J. A. (1990),Prot. Eng. 3, 259–266.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacCallum, J.D., Hefford, M.A., Omar, S. et al. Prediction of folding stability and degradability of thede novo designed protein MB-1 in cow rumen. Appl Biochem Biotechnol 66, 83–93 (1997). https://doi.org/10.1007/BF02788809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788809

Index entries

Navigation