Skip to main content
Log in

Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) fromTrichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4‡C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R2) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity, on the other hand, was higher for CBH I, 1.0 Μmol (67 mg) per gram Avicel, compared to 0.57 Μmol/g (30 mg/g) for CBH II. The isotherms when analyzed with the combined Langmuir-Freundlich model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goyal, A., Ghosh, B., and Eveleigh, D. (1991),Bioresource Technol. 36, 37–50.

    Article  CAS  Google Scholar 

  2. Nidetzky, B., Steiner, W., and Claeyssens, M. (1994),Biachem. J. 303, 817–823.

    CAS  Google Scholar 

  3. Ståhlberg, J., Johansson, G., and Pettersson, G. (1991),Bio/Technology 9, 286–290.

    Article  Google Scholar 

  4. Ståhlberg, J., Johansson, G., and Pettersson, G. (1993),Biochim. Biophys. Acta 1157, 107–113.

    Google Scholar 

  5. Tomme, P., vanTilbeurgh, H., Pettersson, G., vanDamme, J., Vandekerckhove, J., Knowles, J., Teeri, T., and Claeyssens, M. (1988),Eur. J. Biochem. 170, 575–581.

    Article  CAS  Google Scholar 

  6. Galbe, M., Eklund, R., and Zacchi, G. (1990),Appl. Biochem. Biotech. 24/25, 87–101.

    Article  Google Scholar 

  7. Zacchi, G., Skoog, K., and Hahn-HÄgerdal, B. (1988),Biotechnol. Bioeng. 32, 460.

    Article  CAS  Google Scholar 

  8. Castanon, M. and Wilke, C. R. (1980),Biotechnol. Bioeng. 22, 1037–1053.

    Article  CAS  Google Scholar 

  9. Tjerneld, F., Persson, I., Albertsson, P.-å., and Hahn-HÄgerdal, B. (1985),Biotechnol.Bioeng. 27, 1036–1043.

    Article  CAS  Google Scholar 

  10. Tjerneld, F., Persson, I., Albertsson, P.-å., and Hahn-HÄgerdal, B. (1985),Biotechnol.Bioeng. Symp. 15, 419–429.

    Google Scholar 

  11. Beldman, G., Voragen, A. G. J., Rombouts, F. M., Searle-van Leeuwen, M. F., and Pilnik, W. (1987),Biotechnol. Bioeng. 30, 251–257.

    Article  CAS  Google Scholar 

  12. Tomme, P., Heriban, V., and Claeyssens, M. (1990),Biotechnol. Lett. 12, 525–530.

    Article  CAS  Google Scholar 

  13. Woodward, J., Hayes, M. K., and Lee, N. E. (1988),Bio/Technology 6, 301–304.

    Article  CAS  Google Scholar 

  14. Kyriacou, A., Neufeld, R. J., and MacKenzie, C. R. (1989),Biotechnol. Bioeng. 33, 631–637.

    Article  CAS  Google Scholar 

  15. Ryu, D. D. Y., Kim, C, and Mandels, M. (1984),Biotechnol. Bioeng. 26, 488–496.

    Article  CAS  Google Scholar 

  16. Medve, J., Ståhlberg, J., and Tjerneld, F. (1994),Biotechnol. Bioeng. 44, 1064–1073.

    Article  CAS  Google Scholar 

  17. Kim, D. W., Yang, J. H., and Jeong, Y. K. (1988),Appl. Microbiol. Biotechnol. 28, 148–154.

    Article  CAS  Google Scholar 

  18. Kim, D. W., Kim, T. S., Jeong, Y. K., and Lee, J. K. (1992),J. Ferm. Bioeng. 73, 461–466.

    Article  CAS  Google Scholar 

  19. Kyriacou, A., Neufeld, R. J., and MacKenzie, C. R. (1988),Enzyme Microb. Technol. 10, 675–681.

    Article  CAS  Google Scholar 

  20. Lee, S. B., Shin, H. S., Ryu, D. D. Y., and Mandels, M. (1982),Biotechnol. Bioeng. 24, 2137–2153.

    Article  CAS  Google Scholar 

  21. Ooshima, H., Sakata, M., and Harano, Y. (1983),Biotechnol. Bioeng. 25, 3103–3114.

    Article  CAS  Google Scholar 

  22. Bhikhabhai, R., Johansson, G., and Pettersson, G. (1984),J. Appl. Biochem. 6, 336–345.

    CAS  Google Scholar 

  23. Hiemenz, P. C. (1986),Principles of Colloid and Surface Chemistry, 2nd ed., Marcel Dekker, New York.

    Google Scholar 

  24. Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C., Jr., Warren, R. A. J., and Kilburn, D. G. (1992),J. Biol. Chem. 267, 6743–6749.

    CAS  Google Scholar 

  25. Moore, W. J. (1972),Physical Chemistry, 5th ed., Longman London.

    Google Scholar 

  26. James, E. A. and Do, D. D. (1991),J. Chromatogr. 542, 19–28.

    Article  CAS  Google Scholar 

  27. Zubay, G. (1993),Biochemistry, 3rd ed., Brown, Dubuque, IA.

    Google Scholar 

  28. Jovanovic, D. S. (1970),Kolloid Z.u Z. Polym. 235, 1203–1214.

    Article  Google Scholar 

  29. Huang, J.-X. and Horváth, Cs. (1987),J. Chromatogr. 406, 275–284.

    Article  CAS  Google Scholar 

  30. Huang, J.-X. and Horváth, Cs. (1987),J. Chromatogr. 406, 285–294.

    Article  CAS  Google Scholar 

  31. McGhee, J. D. and vonHippel, P. H. (1974),J. Mol. Biol. 86, 469–489.

    Article  CAS  Google Scholar 

  32. Sild, V., Ståhlberg, J., Pettersson, G., and Johansson, G. (1996),FEBS Lett. 378, 51–56.

    Article  CAS  Google Scholar 

  33. Yoshida, H., Nishihara, H., and Kataoka, T. (1993),Biotechnol. Bioeng. 41, 280–286.

    Article  CAS  Google Scholar 

  34. Jennissen, H. P. (1976),Biochemistry 15, 5683–5692.

    Article  CAS  Google Scholar 

  35. Walker, G. J. and Hope, P. M. (1963),Biochem. J. 86, 452–462.

    CAS  Google Scholar 

  36. Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J., and Gronenbom, A. M. (1989),Biochemistry 28, 7241–7257.

    Article  CAS  Google Scholar 

  37. Linder, M., Mattinen, M.-L., Kontteli, M., Lindeberg, G., Ståhlberg, J., Drakenberg, T., Reinikainen, T., Pettersson, G., and Annila, A. (1995),Protein Science 4, 1056–1064.

    CAS  Google Scholar 

  38. Chanzy, H., Henrissat, B., and Vuong, R. (1984), FEBSLett. 172, 193–197.

    Article  CAS  Google Scholar 

  39. Chanzy, H. and Henrissat, B. (1985),FEBS Lett. 184, 285–288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medve, J., Ståhlberg, J. & Tjerneld, F. Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose. Appl Biochem Biotechnol 66, 39–56 (1997). https://doi.org/10.1007/BF02788806

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788806

Index entries

Navigation