Skip to main content
Log in

Enrichment in γ-linolenic acid of acylglycerols by the selective hydrolysis of borage oil

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Selective hydrolysis of borage oil byCandida rugosa lipase immobilized on microporous polypropylene was carried out in an iso-octane-water two-phase system in order to obtain glycerides rich in γ-linolenic acid (GLA). Lipase was immobilized on hydrophobic microporous polypropylene supports by physical adsorption, γ-linolenic acid content in the unhydrolyzed acylglycerols could be raised to 51.7 mol% from an initial content of 23.6 mol% in borage oil with a yield of 59%. A simplified kinetic model was proposed for this selective hydrolysis. The Michaelis constantK M and the maximal-rate constantV max are 0.107M and 393.9 U/mg-protein, respectively. Product inhibition with a dissociation constant of the enzyme-product complexK I = 25 mM was confirmed. Some properties of the immobilized lipase were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ES*:

complex of enzyme and substrate molecules

K I total mass of enzyme in the reactor (mg):

kcat

rate constant in the Michaelis-Menten equation (mmol/min mg protein):

K I dissociation constant for the complex EP* (M)

K M :

apparent Michaelis constant (M)

P:

oleic acid concentration (M)

Po :

initial concentration of oleic acid (mM)

S:

substrate concentration (M)

So :

initial value of S (M)

t:

reaction time (min)

Vi :

initial velocity of reaction (µmol/min)

Vmax :

apparent maximal velocity (µmol/min)

References

  1. Brennender, R. R. (1987), inCRC Handbook of Eicosanoids: Prostaglandins and Related Lipids, vol. 1, part A, Willis, A. L., ed., CRC Press Inc., pp. 99–117.

  2. Scott, J. (1989),Curr. Therapeut, pp. 45–46.

  3. Barber, A. J. (1988),Pharmaceut. J. 240, 723–725.

    Google Scholar 

  4. Jantti, J., Seppala, E., Vapaatalo, H., and Isomaki, H. (1989),Clin. Rheumatol. 8, 238–244.

    Article  CAS  Google Scholar 

  5. Traitler, H., Wille, H. J., and Studer, A. (1988),J. Am. Oil Chem. Soc. 65, 755–758.

    Article  CAS  Google Scholar 

  6. Arai, M., Fukuta, H., and Morikwa, H. (1987),J. Ferment. Technol. 65, 569–573.

    Article  CAS  Google Scholar 

  7. Yokochi, T., Usita, M. T., Kamisaka, Y., Nakahara, T., and Suzuki, O. (1990),J. Am. Oil Chem. Soc. 67, 846–851.

    Article  CAS  Google Scholar 

  8. Mukherjee, K. D. and Kiewitt, I. (1991),Appl. Microbiol. Biotechnol. 35, 579–584.

    Article  CAS  Google Scholar 

  9. Rahmatullah, M. S. K. S., Shukla, V. K. S., and Mukherjee, K. D. (1994),J. Am. Oil Chem. Soc. 71, 563–567.

    Article  CAS  Google Scholar 

  10. Rahmatullah, M. S. K. S., Shukla, V. K. S., and Mukherjee, K. D. (1994),J. Am. Oil Chem. Soc. 71, 569–573.

    Article  CAS  Google Scholar 

  11. Hills, M. J., Kiewitt, I., and Mukherjee, K. D. (1989),Biotechnol. Letters 2, 629–632.

    Article  Google Scholar 

  12. Brink, L. E. S., Tramper, J., Luben, K. Ch. A. M., and Van’t Riet, K. (1988),Enzyme Microb. Technol. 10, 736–743.

    Article  CAS  Google Scholar 

  13. Dordick, J. S. (1991), inApplied Biocatalysis, Blanch, H. W. and Clark, D. S., ed., Marcel Dekker, New York, pp. 1–51.

    Google Scholar 

  14. Brockerhoff, H. (1971),J. Biol. Chem. 246, 5828–5831.

    CAS  Google Scholar 

  15. Ghatorae, A. S., Bell, G., and Hailing, P. J. (1994),Biotechnol. Bioeng. 43, 331–336.

    Article  CAS  Google Scholar 

  16. Brady, C., Metcalfe, L., Slaboszewski, D., and Frank, D. (1988),J. Am. Oil Chem. Soc. 65, 917–921.

    Article  CAS  Google Scholar 

  17. Otero, C., Pastor, E., Fernandez, V. M., and Ballesteros, A. (1990),App. Biochem. Biotechnol. 23, 237–247.

    Article  CAS  Google Scholar 

  18. Ructenstein, E. and Wang, X. (1993),Biotechnol. Tech. 7, 117–122.

    Article  Google Scholar 

  19. Malcata, F. X., Reyes, H. R., Garcia, H. S., Hill, C. G., Jr., and Amundson, C.H. (1990),J. Am. Oil Chem. Soc. 67, 890–910.

    Article  CAS  Google Scholar 

  20. Huang, F. C. and Ju, Y. H. (1994),Biotechnol. Tech. 8, 827–830.

    Article  CAS  Google Scholar 

  21. Lowry, R. R. and Tinsley, I. J. (1976),J. Am. Oil Chem. Soc. 53, 470–172.

    Article  CAS  Google Scholar 

  22. Yamauchi, K., Tanabe, T., and Kinoshita, M. (1979),J. Org. Chem. 44, 638–639.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hsu Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, FC., Ju, YH. & Huang, Cw. Enrichment in γ-linolenic acid of acylglycerols by the selective hydrolysis of borage oil. Appl Biochem Biotechnol 67, 227–236 (1997). https://doi.org/10.1007/BF02788800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788800

Index Entries

Navigation