Journal d’Analyse Mathématique

, Volume 91, Issue 1, pp 389–400 | Cite as

Wiener path integrals and the fundamental solution for the Heisenberg Laplacian

  • Wolfgang Staubach


In this paper, we present an explicit calculation of the heat kernel, fundamental solution and Schwartz kernel of the resolvent for the Heisenberg Laplacian using Wiener path integrals and their realizations via the Trotter product formula. This also gives another derivation of mehler’s formula.


Fundamental Solution Heat Kernel Path Integral Natural Topology Heat Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Beals, B. Gaveau and P. Greiner,On a geometric formula for the fundamental solution of subelliptic Laplacians, Math. Nachr.181 (1996), 81–163.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Beals, B. Gaveau and P. Greiner,Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians, Bull. Sci. Math.121 (1997), 1–36.MATHMathSciNetGoogle Scholar
  3. [3]
    G. Folland,A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc.79 (1973), 373–376.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    B. Gaveau,Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta Math.139 (1977), 95–153.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    I. Gradshteyn and I. Ryzhik,Table of Integrals, Series and Products (fourth edition), Academic Press, New York, 1980.MATHGoogle Scholar
  6. [6]
    P. Greimer, D. Holcman and Y. Kannai,Wave kernels related to second order operators, Duke Math. J.114 (2002), 329–386.CrossRefMathSciNetGoogle Scholar
  7. [7]
    U. Grenander and G. Szegö,Toeplitz Forms and Their Applications, University of California Press, Berkeley, 1958.MATHGoogle Scholar
  8. [8]
    G. Johnson and M. Lapidus,The Feynman Integral and Feynman’s Operational Calculus, Oxford Mathematical Monographs, Oxford Science Publications, Oxford, 2000.MATHGoogle Scholar
  9. [9]
    M. Kac,Integration in Function Spaces and Some of Its Applications, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1980.MATHGoogle Scholar
  10. [10]
    T. Kato,Schrödinger operators with singular potentials, Israel J. Math.13 (1973), 135–148.CrossRefGoogle Scholar
  11. [11]
    H. Kleinert,Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd edition, World Scientific, Singapore, 1995.MATHGoogle Scholar
  12. [12]
    W. Staubach,Path Integrals, Microlocal Analysis and the Fundamental Solution to Hörmander Laplacians Thesis, University of Toronto, 2003.Google Scholar
  13. [13]
    M. Taylor,Non-Commutative Harmonic Analysis, Mathematical Surveys and Monographs 22, Amer. Math. Soc., Providence, RI, 1986.Google Scholar
  14. [14]
    H. Trotter,On products of semigroups of operators, Proc. Amer. Math. Soc.10 (1959), 545–551.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2003

Authors and Affiliations

  • Wolfgang Staubach
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations