Skip to main content
Log in

Lipase from a Brazilian StrainPenicillium citrinum Cultured in a Simple and Inexpensive Medium st]Heat-Denaturation, Kinetics, and pH Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work is a study of lipase production by a Brazilian strain ofPenicillium citrinum using an inexpensive and simple medium without organic nitrogen sources and of some important industrial properties, including thermostability in relation to ionic strength. The maximal lipase activity (1585 U/L) was obtained whenPenicillium citrinum was cultured on 0.75% ammonium sulfate complemented with minerals salts instead of yeast extract. Although this activity was about 55% lower than that produced in medium with yeast extract (2850 U/L), the specific activity (7.8 U/mg proteins) was higher than that obtained with the yeast extract (4.9 U/mg proteins). The morphology of fungus changed totally, with yeast extract there are smooth, solid, and spherical pellets whereas on ammonium sulfate there are small “hairy” pellets uniformly suspended in the medium. The effect of ferrous (Fe++) ions was carried out using medium MA with and without Fe++ ions. Lipase production byPenicillium citrinum in medium MA requires Fe++ ions, the absence of which caused a decreased of about 50% in the specific activity (3.5 U/mg proteins). The utilization of commercial, locally available oils as carbon sources, such as soybean oil (236 U/L) and corn oil (74 U/L) resulted in lower activity compared to olive oil, showing that lipase production byPenicillium citrinum is specifically induced by olive oil. Potassium concentration in the medium can effects the production of lipase (1 mM (1585 U/L), 10 mM (1290 U/L), and 30 mM (1238 U/L), 50 mM (195 U/L), and 100 mM (2 U/L). The crude culture filtered was susceptable to thermal deactivation. It was stable at pH 6.0, but was not stable at the optimum pH (8.0-8.5) at 50 mM. At the low ionic concentration (1-25 mM) this lipase was stable at low pH (3.5-4.0). The activation energy was 22.4 ±2.2 Kcal. mol 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, R. C., Chou, S. J., and Shaw, J. F. (1994),Biotechnol. Appl. Biochem. 19, 93–97.

    CAS  Google Scholar 

  2. Sakaguchi, K. Takagi, M., Horiuchi, H., and Gomi, K. (1992), InApplied Molecular Genetics of Filamentous Fungi, Kinghorn, J. R. and Turner, G., eds., Blackie Academic and Professional, Glasgow, UK, pp. 75–81.

    Google Scholar 

  3. Maliszewska, I. and Mastalerz, P. (1992),Enzyme Microbiol. Technol. 14, 190–193.

    Article  CAS  Google Scholar 

  4. Sztajer, H. and Maliszewska, I. (1989),Biotechnol. Lett. 11, 895–898.

    Article  CAS  Google Scholar 

  5. Alhir, S., Markakis, P., and Chandan, R. C. (1990),J. Agric. Food Chem. 38, 598–601.

    Article  CAS  Google Scholar 

  6. Arbige, M. V. and Pitcher, W. H. (1989),TIBTECH 7, 331.

    Google Scholar 

  7. Smith, J. and Kristiansen, B. (1993),J. Chem. Tech. Biotechnol. 56, 203–222.

    Google Scholar 

  8. Pimentel, M. C. B., Krieger, N., Coelho, L. C. C. B., Fontana, J. O., Melo, E. H. M., Ledingham, W. M., and LimaFilho J.L., (1994),Appl. Biochem. Biotechnol. 49, 59–73.

    Article  CAS  Google Scholar 

  9. Cox, P. W. and Thomas, C. R. (1992),Biotechnol. Bioeng. 39, 945–952.

    Article  CAS  Google Scholar 

  10. Nahel,G. (1971), inMethods of Enzymatic Analysis, vol.2, Bergmeyer, H. V. ed. 2, pp. 814–819.

  11. Kwon, D. Y. and Rhee, J. S. (1986),JAOCS,63, 89–92.

    Article  CAS  Google Scholar 

  12. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1955),J. Biol. Chem. 193, 265–275.

    Google Scholar 

  13. Cooper, T. G. (1977), inThe Tools of Biochemistry, New York, John Wiley & Sons.

    Google Scholar 

  14. Ohnishi, K., Yoshida, Y., and Sekiguchi, J. (1994),J. Ferm. Bioeng. 77, 490–495.

    Article  CAS  Google Scholar 

  15. Ishihara, K., Suzuki, T., Yamane, T., and Shimizu, S. (1989),Appl. Microbiol. Biotechnol. 31, 45–48.

    Article  CAS  Google Scholar 

  16. Pokorny, D., Friedrich, J. and Cimerman, A. (1994),Biotechnol. Lett. 16, 363–366.

    Article  CAS  Google Scholar 

  17. Metz, B. and Kossen, F. (1977),Biotechnol. Bioeng. 19, 781–799.

    Article  CAS  Google Scholar 

  18. Haas, M. J., Cichowicz, D. J., and Bailey, D. G. (1992),Lipids 27, 571–576.

    Article  CAS  Google Scholar 

  19. Henley, J. P. and Sadana, A. (1986),Biotechnol. Bioeng. 28, 1277–1285.

    Article  CAS  Google Scholar 

  20. Sohn, H. S., Chung, S. S., and Rhee, J. S. (1987),Biotechnol. Lett. 9, 117–122.

    Article  CAS  Google Scholar 

  21. Cowan, J. A. (1993), inInorganic Biochemistry: An Introduction, VCH, pp. 99–128.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, M.d.C.B., Melo, E.H.M., Filho, J.L.L. et al. Lipase from a Brazilian StrainPenicillium citrinum Cultured in a Simple and Inexpensive Medium st]Heat-Denaturation, Kinetics, and pH Stability. Appl Biochem Biotechnol 66, 185–195 (1997). https://doi.org/10.1007/BF02788762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788762

Index Entries

Navigation