Skip to main content
Log in

Enzymic activity of whole cells entrapped in reversed micelles

Studies on α-Amylase and Invertase in the Entrapped Yeast Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Studies have been conducted on the enzymic activity of Baker’s yeast and also of Brewer’s yeast entrapped into the reversed micelles formed by cetyl pyridinium chloride (CPC1) in n-hexane. The activities of α-amylase and invertase enzymes in the entrapped cells have been estimated and compared with those in the control experiments where there was no entrapment. The following significant observations have been made: 1. except for invertase, enzymes in Brewer’s yeast, the entrapped yeast cells showed enhanced enzymic activities; 2. when the yeast cells were entrapped inside the reversed micelles along with substrates of the two enzymes, α-amylase, and invertase, the activity of each of these enzymes showed a further enhancement in comparison to that showed in the experiments in which substrates of the individual enzymes alone were entrapped-the phenomenon of synergism; 3. when the yeast cells and the respective substrates were entrapped inside separate reversed micelles and the solutions containing entrapped cells and entrapped substrates were mixed, the activities of the individual enzymes, α-amylase and invertase, showed further enhancement in comparison to the case in which the cells and the substrates were entrapped inside the same reversed micelle (in this case also the phenomenon of synergism was observed); and (4) In the case of experiments in which there was no entrapment, it was observed that the presence of substrates induced more release of enzymes from the yeast cells.

These observations on yeast cells, which to the best of our knowledge have not been reported before, should be biotechnologically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luisi, P. L. and Laane, C. (1986),Trends. Biotechnol. 4, 153–161.

    Article  CAS  Google Scholar 

  2. Deetz, J. and Rozzel, J. D. (1988),Trends. Biotechnol. 6, 15–19.

    Article  CAS  Google Scholar 

  3. Martinek, K. and Berezin, I. V. (1978),J. Solid Phase Biochem. 2, 343–385.

    Google Scholar 

  4. Torchilin, V. P. and Martinek, K. (1979),Enzyme Microbiol. Tech. 1, 74–82.

    Article  CAS  Google Scholar 

  5. Martinek, K., Levashov, A. V., Klyachko, N. L., and Berezin, I. V. (1977),Doklady Acad. Nauk USSR 236, 920–923.

    CAS  Google Scholar 

  6. Martinek, K., Levashov, A. V., Klyachko, N. L., Pantin, V. I. and Berezin, I. V. (1981),Biochim. Biophys. Acta 657, 277–294.

    CAS  Google Scholar 

  7. Hillhorst, R., Laane, S. C., and Veeger, C. (1984),Eur. J. Biochem. 144, 459–466.

    Article  Google Scholar 

  8. Srivastava, R. C., Madamwar, D. B., and Vyas, V. V. (1987),Biotech. Bioeng. 29, 901–902.

    Article  CAS  Google Scholar 

  9. Madamwar, D. B., Bhatt, J. P., Ray, R. M., and Srivastava, R. C. (1988),Enz. Microbiol. Tech. 10, 302–305.

    Article  CAS  Google Scholar 

  10. Luisi, P. L., Giomini, M., Pileni, M. P., and Robinson, B. H. (1988),Biochim. Biophys. Acta 947, 209–216.

    CAS  Google Scholar 

  11. Verhaert, R. M. D., Tyrakowska, B., Hillhorst, R., Schaafsma, T. J., and Veeger, C. (1990),Eur. J. Biochem. 187, 73–79.

    Article  CAS  Google Scholar 

  12. Verhaert, R. M. D., Tyrakowska, B., Hillhorst, R., Schaafsma, T. J., and Veeger, C. (1990),Eur. J. Biochem. 187, 81–88.

    Article  Google Scholar 

  13. Gajjar, L., Dubey, R. S., and Srivastava, R. C. (1994),Appl. Biochem. Biotechnol. 49, 101–112.

    Article  CAS  Google Scholar 

  14. Imre, V. E. and Luisi, P. L. (1981),Biochem. Biophys. Res. Commun. 107, 538–545.

    Article  Google Scholar 

  15. Haring, G., Luisi, P. L., and Meussdorfer, F. (1985),Biochem. Biophys. Res. Commun. 127, 911–915.

    Article  CAS  Google Scholar 

  16. Borkowska, B. and Szczerba, J. (1991),J. Exp. Botany 42, 911–915.

    Article  CAS  Google Scholar 

  17. Oser, B. L. (1971),Hawk’s Physiological Chemistry, Tata McGraw-Hill, New Delhi, India.

    Google Scholar 

  18. Shain, Y. and Mayer, A. M. (1968),Physiol. Plant. 21, 765–776.

    Article  CAS  Google Scholar 

  19. Dubey, R. S. (1982),Biochem. Physiol. Pflanzen 177, 523–535.

    CAS  Google Scholar 

  20. Lowry, O. H., Rosenbrough, N. J., Farr, A. Z., and Randall, R. J. (1951),J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  21. Fendler, J. H. (1982),Membrane Mimetic Chemistry, Wiley, New York.

    Google Scholar 

  22. Jayaraman, J. (1992),Laboratory Manual in Biochemistry, Wiley Eastern, New Delhi, India.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajjar, L., Singh, A., Dubey, R.S. et al. Enzymic activity of whole cells entrapped in reversed micelles. Appl Biochem Biotechnol 66, 159–172 (1997). https://doi.org/10.1007/BF02788760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788760

Index Entries

Navigation