Skip to main content
Log in

Lipase immobilized on hydrophobic microporous polypropylene for the hydrolysis of palm kernel olein

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipase (triacylglycerol ester hydrolase, EC 3.1.1.3) fromRhizopus arrhizus was immobilized in this work by adsorption on microporous polypropylene and employed for the lipolysis of palm kernel olein. The optimum operating temperature for the lipolysis reaction was determined. The reaction follows Michaelis-Menten kinetics with product competitive inhibition for substrate concentrations in the range of 0.175–0.877M. The apparentK m and Vmax were 0.42M and 691 U/mg protein, respectively. A dissociation constant of the enzymeproduct complex,K I = 29.73 mM, for the product inhibition was also determined. Additionally, the time-courses of the reaction for various substrate concentrations were obtained and correlated sufficiently with those predicted from the theoretical rate equation for a period of up to 2 h. Experimental results indicated that discrepancies between the observed results and the predicted ones increase with reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ES*:

complex of enzyme and substrate molecules

Et :

total mass of enzyme in the reactor (mg)

k cat :

rate constantin the Michaelis-Menten equation (mmo1/min mg protein)

K I :

dissociation constant for the complex EP* (M)

K m :

apparent Michaelis constant (M)

P:

oleic acid concentration (M)

P0 :

initial concentrationof oleic acid (mM)

S:

substrate concentration based on ester bond (M)

S0 :

initial value of S (M)

t:

reaction time (min)

VI :

initial velocityof reaction (μmol/min)

Vmax :

apparent maximal velocity (μmol/min)

X:

conversion of substrate.

References

  1. John, V. T. and George, A. (1991), inBiocatalysts for Industry, Dordick, J. S., ed., Plenum, New York, pp. 193–217.

    Google Scholar 

  2. Brink, L. E. S., Tramper, J., Luyben, K. Ch. A. M., and Van’t Riet, K. (1988),Enzyme Microb. Technol. 10, 736–743.

    Article  CAS  Google Scholar 

  3. Dordick, J. S. (1991), inApplied Biocatalysis, Blanch, H. W. and Clark, D. S., eds., Marcel Dekker, New York, pp. 1–51.

    Google Scholar 

  4. Bar, R. (1987), inBiocatalysis in Organic Media, Laane, C., Tramper, J., and Lilly, M. D., eds., Elsevier Science, Amsterdam, pp. 147–153.

    Google Scholar 

  5. Lilly, M. D. and Woodley, J. M. (1985), inBiocatalysts in Organic Syntheses, Tramper, J., van der plas, H. C., and Linko, P., eds., Elsevier, Amsterdam, pp. 179–192.

    Google Scholar 

  6. Hailing, P. J. (1994),Enzyme Microb. Technol. 16, 178–206.

    Article  Google Scholar 

  7. Mojovic, L., Siler-Marinkovic, S.,. Kukic, G., and Vunjak-Novakovic, G. (1993),Enzyme Microb. Technol. 15, 438–443.

    Article  CAS  Google Scholar 

  8. Valivety, R. H., Hailing, P. J., and Macrae, A. R. (1992),Biochim. Biophy. Acta 1118, 218–222.

    CAS  Google Scholar 

  9. Cassells, J. M. and Hailing, P. J. (1988),Enzyme Microb. Technol. 10, 486–491.

    Article  CAS  Google Scholar 

  10. Brady, C., Metcalfe, L., Slaboszewski, D., and Frank, D. (1988),J. Am. Oil Chem. Soc. 65, 917–921.

    Article  CAS  Google Scholar 

  11. Otero, C., Pastor, E., Fernandez, V. M., and Ballestero, A. (1990),Appl. Biochem. Biotechnol. 23, 237–247.

    Article  CAS  Google Scholar 

  12. Ruckenstein, E. and Wang, X. (1993),Biotechnol. Tech. 7, 117–122.

    Article  CAS  Google Scholar 

  13. Reslow, M., Adlercreutz, P., and Mattiasson, B.. (1988),Eur. J. Biochem. 172, 573–578.

    Article  CAS  Google Scholar 

  14. Malcata, F. X., Reyes, H. R., Garcia, H. S., Hill, C. G., Jr., and Amundson, C.H., (1990),J. Am. Oil Chem. Soc. 67, 890–910.

    Article  CAS  Google Scholar 

  15. Lowry, R. R. and Tinsley, I. J. (1976)J. Am. Oil Chem. Soc. 53, 470–472.

    Article  CAS  Google Scholar 

  16. Han, D. and Rhee, J. S. (1986),Biotechnol. Bioeng. 28, 1250–1255.

    Article  CAS  Google Scholar 

  17. Celebi, S. S., Ucar, T., and Caglar, M. A. (1981), inAdvances in Biotechnology, vol. I, Moo-young, M., Robinson, C. W., and Veniza, C., eds., Pergamon, Toronto, pp. 691–697.

    Google Scholar 

  18. Gatt, S. and Bartfai, T. (1977),Biochim. Biophy. Acta 488, 13–24.

    CAS  Google Scholar 

  19. Rietsch, J., Pattus, F., Desnuelle, P., and Verger, R. (1977)J. Biol. Chem. 252, 4313–4318.

    CAS  Google Scholar 

  20. Brockerhoff, H. (1971),J. Biol. Chem. 246, 5828–5831.

    CAS  Google Scholar 

  21. Padmini, P., Rakshit, S. K., and Baradarajan, A. (1994),Enzyme Microb. Technol. 16, 432–435.

    Article  CAS  Google Scholar 

  22. Ghatorae, A. S., Bell, G., and Hailing, P. J. (1994),Biotechnol. Bioeng. 43, 331–336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, YH., Huang, FC. Lipase immobilized on hydrophobic microporous polypropylene for the hydrolysis of palm kernel olein. Appl Biochem Biotechnol 55, 17–26 (1995). https://doi.org/10.1007/BF02788745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788745

Index Entries

Navigation