Molecular Biotechnology

, Volume 11, Issue 3, pp 213–220 | Cite as

Reconstitution of fibroblast growth factor receptor interactions in the yeast two hybrid system

  • Ronit Aloni-Grinstein
  • Andrew Seddon
  • Avner Yayon


Fibroblast growth factors (FGF) activate their receptors through the formation of trimolecular complexes, composed of a ligand, a receptor, and a heparan sulfate oligosaccharide, all of which are members of particularly large families capable of multiple interactions in a combinatorial fashion. Understanding this large network of interactions not only presents a great challenge, but is practically beyond the capacity of most classical techniques routinely used to study ligand receptor interactions. We have used the yeast two hybrid system to study protein-protein interaction in the FGF family. Both ligand and receptor ectodomains are properly folded and functional in the yeast. Basic FGF (bFGF) expressed in the yeast dimerizes spontaneously. This self-assembly occurs at low affinity, which can be greatly enhanced by the introduction of heparin, supporting a defined role for heparin in bFGF dimerization. Screening a rat embryo cDNA library with bFGF in the yeast two hybrid system identified a short variant of FGF receptor 1, found most frequently in embryonal and tumor cells and which possesses affinity toward bFGF that is significantly greater than that of the more abundant, full-length receptor. We find the yeast two hybrid system, a most suitable alternative method for the analysis of growth factor-receptor interactions as well as for screening for novel interacting proteins and modulators of FGF and its receptors.

Index Entries

bFGF FGFR yeast two hybrid heparin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Givol, D. and Yayon, A., (1992)FASEB J. 6, 3362–3369.PubMedGoogle Scholar
  2. 2.
    Johnson, D. E. and Williams, L. T. (1993)Adv. Cancer Res. 160, 1–41.Google Scholar
  3. 3.
    Yang, X., Hubbard, J. A., and Carlson, M. (1992)Science 257, 31–33.CrossRefGoogle Scholar
  4. 4.
    Chein, C. T., Bartel, P. L., Sternglanz, R., and Fields, S. (1991)Proc. Natl. Acad. Sci. USA. 88, 9578–9582.CrossRefGoogle Scholar
  5. 5.
    Wade Harper, J., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J., 1993,Cell 75, 805–816.CrossRefGoogle Scholar
  6. 6.
    Ito, H., Fukada, Y., Murata, K., and Kimura, A. (1983)J. Bacteriol. 153, 161–168.Google Scholar
  7. 7.
    Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L., (1993)Science 259, 1918–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Zimmer, Y., Givol, D., and Yayon, A. (1993)J Biol Chem 268, 7899–7903.PubMedGoogle Scholar
  9. 9.
    Johnson, D. E., Lee, P. L., Lu, J., and Williams, L. T. (1990)Molecular and Cellular Biology 10, 4728–4736.PubMedGoogle Scholar
  10. 10.
    Mansukhani, A., Moscatelli, D., Talarico, D., Levytska, V., and Basilico, C. (1990)Proc. Natl. Acad. Sci. USA. 87, 4378–4382.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, E., Kan, M., Xu, J., Wang, F., Hou, J., and McKeehan, W. L. (1993)Mol Cell Biol 13, 3907–3918.PubMedGoogle Scholar
  12. 12.
    Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillip, H. S., and Ferrara, N. (1993)Nature 362, 841–844.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan, G., Wang, F., Fukabori, Y., Sussan, D., Hou, J., and Mckeehan, W. L. (1992)Biochem. Biophys. Res. Commun. 183, 423–430.PubMedCrossRefGoogle Scholar
  14. 14.
    Bernard, O., Li, M., and Reid, H. (1991)Proc. Natl. Acad. Sci. USA 88, 9578–9582.CrossRefGoogle Scholar
  15. 15.
    Prudovsky, I. A., Savion, N., LaVallee, T. M., and Maciag, T. (1996)J. of Biol. Chem. 14,198–14,206.Google Scholar
  16. 16.
    Spivak, K. T., Lemmon, M. A., Dikic, I., Ladbury, J. E., Pinchasi, D., Huang, J., Jaye, M., Schlessinger, J., and Lax, I. (1994)Cell 79, 1015–1024.CrossRefGoogle Scholar
  17. 17.
    Albini, A., Benelli, R., Marco, P., Rusnati, M., Ziche, M., Rubartelli, A., Paglialunga, G., Bussolino, F., and Noonan, D. (1995)Proc. Natl. Acad. Sci. USA 92, 4838–4842.PubMedCrossRefGoogle Scholar
  18. 18.
    Roghani, M., Mansukhani, A., Dell'Era, P., Bellosta, P., Basilico, C., Rifkin, D. B., and Moscatelli, D. (1994)J. Biol Chem. 269, 3976–3984.PubMedGoogle Scholar
  19. 19.
    Spivak, K. T., Mohammadi, M., Hu, P., Jaye, M., Schlessinger, J., and Lax, I., (1994)J Biol Chem 269, 14,419–14,423.Google Scholar
  20. 20.
    Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991)Cell 64, 841–848.PubMedCrossRefGoogle Scholar
  21. 21.
    Pantoliano, M. W., Horlick, R. A., Springer, B. A., Van, D. D., Tobery, T., Wetmore, D. R., Lear, J. D., Nahapetian, A. T., Bradley, J. D., and Sisk, W. P. (1994)Biochemistry 33, 10,229–10,248.CrossRefGoogle Scholar
  22. 22.
    Ozenberger, B. A. and Young, K. H. (1995)Molecular Endocrinology 9, 1321–1329.PubMedCrossRefGoogle Scholar
  23. 23.
    Bartel, P. L., Chien, C. T., Sternglanz, R., and Fields, S. (1993)In Cellular Interactions in Development: a practical approach (Hartley, D. A., ed.) Oxford University Press, Oxford. 153–179.Google Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Ronit Aloni-Grinstein
    • 1
  • Andrew Seddon
    • 2
  • Avner Yayon
    • 1
  1. 1.Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Protein and Molecular StructurePfizer Inc.Grotons

Personalised recommendations