Journal d’Analyse Mathématique

, Volume 17, Issue 1, pp 59–70 | Cite as

Distortion theorems for lemniscates and level loci of Green's functions

  • Dorothy Browne Shaffer


Half Plane Steep Descent Concentric Circle Level Curve Level Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Davis and H. Pollack, On the zeros of total sets of polynomials.Trans. of the Am. Math. Soc. 72, 1952 pp. 82–103.MATHCrossRefGoogle Scholar
  2. 2.
    P. Erdös, F. Herzog, and G. Piranian, Metric properties of Polynomials.Journal d'Analyse Mathématique, Vol. VI. Jerusalem 1958 pp. 125–148.CrossRefGoogle Scholar
  3. 3.
    Sz. G. Nagy, Ueber die allgemeinen Lemniskaten.Acta Sci. Math. XI, 4, pp. 207–222.Google Scholar
  4. 4.
    J. L. Ullman, Two mapping properties of schlicht functions.Proc. Am. Math. Soc., Vol 2, No. 4, 1951, pp. 654–657, p. 654.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. L. Walsh, Lemniscates and Equipotential Curves of Green's Function.Am. Math., Monthly, 1935, pp. 1–17. p. 8; p. 16; p. 17.CrossRefGoogle Scholar
  6. 6.
    J. L. Walsh, The Location of Critical Points.Am. Math. Soc. Coll. Publication N. Y. 1950, pp. 243–244, p. 5.Google Scholar
  7. 7.
    J. L. Walsh, The circles of curvature of the curves of steepest descent of Green's function.Am. Math. Monthly, Vol.68, 1961, pp. 323–329, p. 323.MATHCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1966

Authors and Affiliations

  • Dorothy Browne Shaffer
    • 1
  1. 1.Fairfield UniversityFairfieldU.S.A.

Personalised recommendations