Advertisement

Journal d’Analyse Mathématique

, Volume 27, Issue 1, pp 159–204 | Cite as

Cardinal interpolation and spline functions VI. Semi-cardinal interpolation and quadrature formulae

  • I. J. Schoenberg
Article

Keywords

Quadrature Formula Spline Function Spline Interpolation Interpolation Problem Interpolation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun (Editors),Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, Washington, D.C., 1964.MATHGoogle Scholar
  2. 2.
    A. Calderón, F. Spitzer and H. Widom,Inversion of Toeplitz matrices, Illinois J. Math. 3 (1959), 490–498.MATHMathSciNetGoogle Scholar
  3. 3.
    Roger Cotes,De metodo differentiali Newtoniana, in the Appendix of Harmonia Mensurarum, Cambridge, 1722.Google Scholar
  4. 4.
    M. G. Krein,Integral equations on a half-line with kernel depending upon the difference of the arguments, Amer. Math. Soc. Trans. (2) 22 (1962), 163–288.Google Scholar
  5. 5.
    P. R. Lipow and I. J. Schoenberg,Cardinal interpolation and spline functions III. Cardinal Hermite interpolation, J. Linear Algebra Appl.6 (1973), 273–304. Also MRC Tech. Sum. Rep. #1113.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    L. F. Meyers and A. Sard,Best approximate integration formulas, J. Math. and Phys.29 (1950), 118–123.MATHMathSciNetGoogle Scholar
  7. 7.
    A. Sard,Linear approximation, American Math. Society, Providence, R. I., 1963.MATHGoogle Scholar
  8. 8.
    A. Sard and S. Weintraub,A book of splines J. Wiley and Sons, New York, 1971.MATHGoogle Scholar
  9. 9.
    I. J. Schoenberg,On best approximation of linear operators, Indag. Math.26 (1964), 155–163.MathSciNetGoogle Scholar
  10. 10.
    I. J. Schoenberg,Monosplines and quadrature formulae, in: Theory and applications of spline functions, T. N. E. Greville (Editor), Academic Press, New York, 1969, pp. 157–207.Google Scholar
  11. 11.
    I. J. Schoenberg,Cardinal interpolation and spline functions, J. Approximation Theory2 (1969), 167–206. Also MRC Tech. Sum. Rep. #852.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    I. J. Schoenberg,Cardinal interpolation and spline functions. II.The case of data of power growth, J. Approximation Theory6 (1972), 404–420. Also MRC Tech. Sum. Rep. #1104.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    I. J. Schoenberg,Cardinal interpolation and spline functions IV.The exponential Euler splines, in: Linear Operators and Approximation (Proc. of Oberwolfach Conference, August 14–22, 1971). ISNM20 (1972), 382–404. Also MRC Tech. Sum. Rep. #1153.Google Scholar
  14. 14.
    I. S. Schoenberg and A. Sharma,Cardinal interpolation and spline functions V.The B-spline for cardinal Hermite interpolation, J. Linear Algebra Appl.7 (1973), 1–42. Also MRC Tech. Sum. Rep. #1150.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    I. J. Schoenberg,On cubic spline interpolation at equidistant nodes, MRC Tech. Sum. Rep. #1121.Google Scholar
  16. 16.
    I. J. Schoenberg,On equidistant cubic spline interpolation, Bull. Amer. Math. Soc.77 (1971), 1039–1044.MATHMathSciNetGoogle Scholar
  17. 17.
    I. J. Schoenberg and A. Sharma,The interpolatory background of the Euler-Maclaurin quadrature formula, Bull. Amer. Math. Soc.77 (1971), 1034–1038.MATHMathSciNetGoogle Scholar
  18. 18.
    I. J. Schoenberg,On monosplines of least square deviation and best quadrature formulae II, J. SIAM Numer. Anal.3 (1966), 321–328.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    I. J. Schoenberg, and S. D. Silliman,In semi-cardinal quadrature formulae, MRC Tech. Sum. Rep. #1300. To appear in the April 1974 issue of Math. Comp.Google Scholar
  20. 20.
    S. D. Silliman,The numerical evaluation by splines of the Fourier transform and the Laplace transform, University of Wisconsin Ph. D. thesis, August 1971.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1974

Authors and Affiliations

  • I. J. Schoenberg
    • 1
  1. 1.Mathematics Research CenterUniversity of WisconsinMadisonU.S.A.

Personalised recommendations