Cell Biophysics

, Volume 5, Issue 4, pp 265–279 | Cite as

Intranuclear localization of histone acetylation inPhysarum polycephalum and the structure of functionally active chromatin

  • Jaap H. Waterborg
  • Harry R. Matthews


Based on studies of histone acetylation in vivo inPhysarum polycephalum, we present the following hypotheses: (1) Transcription-specific histone acetylation on histones H3 and H4 is a localized process at the nuclear matrix; (2) Histone acetylation in the S phase, which is specific for newly synthesized histones, occurs in an intranuclear nonlocalized process.

These hypotheses can explain: (1) the histone specificity of histone acetylation that is dependent on the functional state of the chromatin; (2) the apparent absence of turnover of histone acetylation in the bulk of the chromatin despite a definite low level of steady-state acetylation of all four core histones in bulk chromatin; (3) the pattern of butyrate-induced hyperacetylation observed for active and inactive chromatin.

Index Entries

Intranuclear localization, of histone acetylation localization intranuclear, of histone acetylation histone acetylation, intranuclear localization of acetylation, intranuclear localization of histone Physarum polycephalum, histone acetylation and chromatin structure in chromatin structure, inPhysarum polycephalum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waterborg, J. H., and Matthews, H. R. (1983),Biochemistry 22, 1489–1496.PubMedCrossRefGoogle Scholar
  2. 2.
    Waterborg, J. H., and Matthews, H. R. (1984) Submitted.Google Scholar
  3. 3.
    Mende, L. M., Waterborg, J. H., Mueller, R. D., and Matthews, H. R. (1983),Biochemistry 22, 38–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Muldoon, J. J., Evans, T. E., Nygaard, O. D., and Evans, H. H. (1971),Biochim. Biophys. Acta 247, 310–321.PubMedGoogle Scholar
  5. 5.
    Evans, T. E., and Evans, H. H. (1980),J. Bacteriol. 143, 897–905.PubMedGoogle Scholar
  6. 6.
    Rao, B., and Gontcharoff, M. (1969),Exp. Cell Res. 56, 269–274.PubMedCrossRefGoogle Scholar
  7. 7.
    Mohberg, J., Dworzak, E., and Sachsenmaier, W. (1980),Exptl. Cell Res. 126, 351–357.PubMedCrossRefGoogle Scholar
  8. 8.
    Fouquet, H., Boehm, R., Wick, R., Sauer, H. W., and Scheller, K. (1975)Archiv. Biochem. Biophys. 168, 273–280.CrossRefGoogle Scholar
  9. 9.
    Bonner, W. M., West, M. H. P., and Stedman, H. D. (1980),Eur. J. Biochem. 109, 17–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson, E. M., Matthews, H. R., Littau, V. C., Lothstein, L., Bradbury, E. M., and Allfrey, V. G. (1978),Arch. Biochem. Biophys. 191, 537–550.PubMedCrossRefGoogle Scholar
  11. 11.
    Waterborg, J. H., Fried, S. R., and Matthews, H. R. (1983),Eur. J. Biochem. 136, 245–252.PubMedCrossRefGoogle Scholar
  12. 12.
    Waterborg, J. H., and Matthews, H. R. (1983),FEBS Lett. 162, 416–419.CrossRefGoogle Scholar
  13. 13.
    Matthews, H. R., and Waterborg, J. H. (1983) inThe Enzymology of Post-Translational Modification of Proteins (Freedman, R., and Hawkins, H. C., eds.), Academic Press, London, in press, pp.Google Scholar
  14. 14.
    Chahal, S. S., Matthews, H. R., and Bradbury, E. M. (1980),Nature 287, 76–79.PubMedCrossRefGoogle Scholar
  15. 15.
    Prior, C. P., Cantor, C. R., Johnson, E. M., Littau, V. C., and Allfrey, V. G. (1983),Cell,34 1033–1042.PubMedCrossRefGoogle Scholar
  16. 16.
    Pierron, G., Sauer, H. W., Toublan, B., and Jalouzot, R. (1982),Eur. J. Cell Biol. 29, 104–113.PubMedGoogle Scholar
  17. 17.
    Thoma, F., Koller, T., and Klug, A. (1979),J. Cell. Biol. 83, 403–426.PubMedCrossRefGoogle Scholar
  18. 18.
    Azorin, F., Perez-Grau, L., and Subirana, J. A. (1982),Chromosoma 85, 251–260.PubMedCrossRefGoogle Scholar
  19. 19.
    Cavazza, B., Trefiletti, V., Pioli, F., Ricci, E., and Patrone, E. (1983),J. Cell Sci. 62, 81–102.PubMedGoogle Scholar
  20. 20.
    Weishood, S. (1982),Nature 297, 289–295.CrossRefGoogle Scholar
  21. 21.
    Allan, J., Harborne, N., Rau, D. C., and Gould, H. (1982),J. Cell Biol. 92, 285–297.CrossRefGoogle Scholar
  22. 22.
    Cary, P. D., Moss, T., and Bradbury, E. M. (1978),Eur. J. Biochem. 89, 475–482.PubMedCrossRefGoogle Scholar
  23. 23.
    Rill, R. L., and Osterhof, D. K. (1982),J. Biol. Chem. 257, 14,875–14,880.Google Scholar
  24. 24.
    Brandt, W. F., Boehm, L., and Von Holt, C. (1975),FEBS Lett. 51, 88–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Boehm, L., Crane-Robinson, C., and Sautiere, P. (1980),Eur. J. Biochem. 106, 525–530.CrossRefGoogle Scholar
  26. 26.
    Boehm, L., Briand, G., Sautiere, P., and Crane-Robinson, C. (1981),Eur. J. Biochem. 119, 67–74.CrossRefGoogle Scholar
  27. 27.
    Boehm, L., Briand, G., Sautiere, P., and Crane-Robinson, C. (1982),Eur. J. Biochem. 123, 299–303.CrossRefGoogle Scholar
  28. 28.
    Grigoryev, S. A., and Krashenninnikov, I. A. (1982),Eur. J. Biochem. 129, 119–125.PubMedCrossRefGoogle Scholar
  29. 29.
    Mathis, D., Oudet, P., and Chambon, P. (1980),Progr. Nucl. Acid Res. Mol. Biol. 24, 1–55.Google Scholar
  30. 30.
    Sures, I., and Gallwitz, D. (1980),Biochem. 19, 943–951.CrossRefGoogle Scholar
  31. 31.
    Dod, B., Kervabon, A., and Parello, J. (1982),Eur. J. Biochem. 121, 401–405.PubMedCrossRefGoogle Scholar
  32. 32.
    Estepa, I., and Pestana, A. (1983),Eur. J. Biochem. 132, 249–254.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiktorowicz, J. E., and Bonner, J. (1982),J. Biol. Chem. 257, 12,893–12,900.Google Scholar
  34. 34.
    Boehm, J., Schlaeger, E.-J., and Knippers, R. (1980),Eur. J. Biochem. 112, 353–362.CrossRefGoogle Scholar
  35. 35.
    Garcea, R. L., and Alberts, B. M. (1980),J. Biol. Chem. 255, 11,454–11,463.Google Scholar
  36. 36.
    Fukushima, M., Ota, K., Fujimoto, D., and Horiuchi, K. (1980),Biochem. Biophys. Res. Commun. 92, 1409–1414.PubMedCrossRefGoogle Scholar
  37. 37.
    Waterborg, J. H., and Matthews, H. R. (1982),Anal. Biochem. 122, 313–318.PubMedCrossRefGoogle Scholar
  38. 38.
    Waterborg, J. H., and Matthews, H. R. (1982),Exptl. Cell Res. 138, 462–466.PubMedCrossRefGoogle Scholar
  39. 39.
    Kikuchi, H., and Fujimoto, D. (1973),FEBS Lett. 29, 280–282.PubMedCrossRefGoogle Scholar
  40. 40.
    Hay, C. W., and Candido, E. P. M. (1983),J. Biol. Chem. 258, 3726–3734.PubMedGoogle Scholar
  41. 41.
    Dÿkwel, P. A., Mullenders, L. H. F., and Wanka, F. (1979),Nucleic Acids Res. 6, 219–230.CrossRefGoogle Scholar
  42. 42.
    Pardoll, D. M., Vogelstein, B., and Coffey, D. S. (1980),Cell 19, 527–536.PubMedCrossRefGoogle Scholar
  43. 43.
    McCready, S. J., Godwin, J., Mason, D. W., Brazell, I. A., and Cook, P. R. (1980),J. Cell Sci. 46, 365–386.PubMedGoogle Scholar
  44. 44.
    Berezney, R., and Buchholtz, L. A. (1981),Exptl. Cell Res. 132, 1–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith, H. C., and Berezney, R. (1983),Biochemistry 22, 3042–3046.PubMedCrossRefGoogle Scholar
  46. 46.
    Pardoll, D. M., and Vogelstein, B. (1980),Exptl. Cell Res. 128, 466–470.PubMedCrossRefGoogle Scholar
  47. 47.
    Clawson, G. A., and Smuckler A. E. (1980),Biochem. Biophys. Res. Commun. 96, 812–816.PubMedCrossRefGoogle Scholar
  48. 48.
    Maundrell, K., Maxwell, E. S., Puvion, E., and Scherrer, K. (1981),Exptl. Cell Res. 136, 435–445.PubMedCrossRefGoogle Scholar
  49. 49.
    Ben-Ze'ev, A., Abulafia, R., and Aloni, Y. (1982),EMBO J. 1, 1225–1231.PubMedGoogle Scholar
  50. 50.
    Robinson, S. I., Small, D., Idzerda, R., McKnight, G. S., and Vogelstein, B. (1983),Nucleic Acids Res. 11, 5113–5130.PubMedCrossRefGoogle Scholar
  51. 51.
    Reeves, R., and Candido, E. P. M. (1980),Nucleic Acids Res. 8, 1947–1963.PubMedCrossRefGoogle Scholar
  52. 52.
    Reeves, R., and Chang, D. (1983),J. Biol. Chem. 258, 679–687.PubMedGoogle Scholar
  53. 53.
    Wiegand, R. C., and Brutlag, D. L. (1981),J. Biol. Chem. 256, 4578–4583.PubMedGoogle Scholar
  54. 54.
    Horiuchi, K., and Fujimoto, D. (1972),J. Biochem. Tokyo 72, 433–438.PubMedGoogle Scholar
  55. 55.
    Ruiz-Carillo, A., Wangh, L. J., and Allfrey, V. G. (1975),Science 190, 117–128.CrossRefGoogle Scholar
  56. 56.
    Woodland, H. R. (1979),Dev. Biol. 68, 360–370.PubMedCrossRefGoogle Scholar
  57. 57.
    Moyne, G., Katinka, M., Saragosti, S., Chestier, A., and Yaniv, M. (1981),Progr. Nucl. Acid. Res. Mol. Biol. 26, 151–167.CrossRefGoogle Scholar
  58. 58.
    Seale, R. L. (1981),Biochem. 20, 6432–6437.CrossRefGoogle Scholar
  59. 59.
    Annunziato, A. T., and Seale, R. L. (1982),J. Cell Biol. 95, 73a.CrossRefGoogle Scholar
  60. 60.
    Jackson, V., Shires, A., Chalkley, R., and Granner, D. K. (1975),J. Biol. Chem. 250, 4856–4863.PubMedGoogle Scholar
  61. 61.
    Jackson, V., Shires, A., Tanphaichitr, N., and Chalkley, R. (1976),J. Mol. Biol. 104, 471–483.PubMedCrossRefGoogle Scholar
  62. 62.
    Cousens, L. S., Gallwitz, D., and Alberts, B. M. (1979),J. Biol. Chem. 254, 1716–1723.PubMedGoogle Scholar
  63. 63.
    Nelson, D., Covault, J., and Chalkley, R. (1980),Nucleic Acids Res. 8, 1745–1763.PubMedCrossRefGoogle Scholar
  64. 64.
    Covault, J., and Chalkley, R. (1980),J. Biol. Chem. 255, 9110–9116.PubMedGoogle Scholar
  65. 65.
    Cousens, L. S., and Alberts, B. M. (1982),J. Biol. Chem. 257, 3945–3949.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc 1983

Authors and Affiliations

  • Jaap H. Waterborg
    • 1
    • 2
  • Harry R. Matthews
    • 1
    • 2
  1. 1.Cell and Molecular Biology LaboratoryUniversity of SussexBrightonUK
  2. 2.Department of Biological Chemistry, Medical SchoolUniversity of California at DavisDavisUSA

Personalised recommendations