Skip to main content
Log in

Peroxidase-catalyzed polymerization and depolymerization of coal in organic solvents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Peroxidases from horseradish roots (HRP) and soybean hulls (SBP) catalyze the efficient polymerization of a 4-kDa dimethylformamide (DMF)-soluble fraction of Mequininza (Spanish) lignite in 50% (v/v) DMF with an aqueous component consisting of acetate buffer, pH 5.0. Under these conditions, HRP and SBP catalyze the oxidation of free phenolic moieties in the coal matrix, thereby leading to oxidative polymerization of the low-molecular-weight coal polymers. The high fraction of nonphenolic aromatic moieties in coal inspired us to examine conditions whereby such coal components could also become oxidized. Oxidation of nonphenolic aromatic compounds was attempted using veratryl alcohol as a model substrate. SBP catalyzed the facile oxidation of veratryl alcohol at pH <3.HRP, however, was unable to elicit veratryl alcohol oxidation. The potential for SBP to catalyze interunit bond cleavage on complex polymeric substrates was examined using l-(3,4-dimethoxyphenyl)-2-(phenoxy)propan-1,3-diol (1) as a substrate. SBP catalyzed the Cα-Cβ and β-ether bond cleavage of this compound, suggesting that similar reactions on coal, itself, could lead to depolymerization. Depolymerization of a >50 Da coal fraction was achieved using SBP in 50% (v/v) DMF with an aqueous component adjusted to pH 2.2. Approximately 15% of the initial high-molecular-weight lignite fraction was depolymerized to polymers 4 Da in size. Hence, SBP is capable of catalyzing the depolymerization of coal in organic solvents, and this may have important ramifications in the generation of liquid fuels from coals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stock, L. M. (1985), inChemistry of Coal Conversion, Schlosberg, R. H. ed., Plenum, New York, pp. 253–316.

    Google Scholar 

  2. Speight, J. G. (1983),The Chemistry and Technology of Coal, Marcel Dekker, New York, pp. 215–240.

    Google Scholar 

  3. Cohen, N. S. and Gabriele, P. D. (1982),Appl. Environ. Microbiol. 44, 23–27.

    CAS  Google Scholar 

  4. Scott, C. D., Strandberg, G. W., and Lewis, S. N. (1986),Biotechnol. Prog. 2, 131–139.

    Article  CAS  Google Scholar 

  5. Pyne, J. W., Jr., Stewart, D. L., Fredrickson, J., and Wilson, B. W. (1987),Appl. Environ. Microbiol. 53, 2844–2848.

    CAS  Google Scholar 

  6. Ward, B. (1985),System. Appl Microbiol. 6, 236–238.

    Google Scholar 

  7. Runnion, K. and Combie, J. D. (1990),Appl. Biochem. Biotechnol. 24/25, 817–829.

    Google Scholar 

  8. Dordick, J. S. (1989),Enzyme Microb. Technol. 11, 194–211.

    Article  CAS  Google Scholar 

  9. Klibanov, A. M. (1990),Acc. Chem. Res. 23, 114–120.

    Article  CAS  Google Scholar 

  10. Scott, C. D. and Lewis, S. N. (1988),Appl. Biochem. Biotechnol. 18, 403–412.

    CAS  Google Scholar 

  11. Wilson, B. W., Bean, R. W., Franz, J. A., Thomas, B. L., Cohen, M. S., Aronson, H., and Gray, E. T. (1987),Energy and Fuels 1, 80–84.

    Article  CAS  Google Scholar 

  12. Dordick, J. S., Ryu, K., and McEldoon, J. P. (1991),Resources, Conservation and Recycling 5, 195–209.

    Article  Google Scholar 

  13. Klyachko, N. L. and Klibanov, A. M. (1992),Appl. Biochem. Biotechnol. 37, 53–68.

    CAS  Google Scholar 

  14. Scott, C. D., Woodward, C. A., Thompson, J. E., and Blankinship, S. L. (1990),Appl. Biochem. Biotechnol. 24/25, 799–815.

    Google Scholar 

  15. Kirk, T. K., Brown, W., and Cowling, E. B. (1969),Biopolymers 7, 135–153.

    Article  CAS  Google Scholar 

  16. Yamazaki, I. and Piette, L. H. (1963),Biochim. Biophys. Ada 77, 47–64.

    Article  CAS  Google Scholar 

  17. Hayatsu, R., Winans, R. E., McBeth, R. L., Scott, R. G., Moore, L. P., and Studier, M. H. (1981), inCoal Structure, vol. 192 ofAdvances in Chemistry Series, Gorbaty, M. L. and Ouchi, K., eds., American Chemical Society, Washington, DC, pp. 133–149.

    Google Scholar 

  18. Blinkovsky, A. M. and Dordick, J. S. (1993),J. Polym. Sci.: Part A: Polym. Chem. 31, 1839–1846.

    Article  CAS  Google Scholar 

  19. Tien, M. and Kirk, T. K. (1983),Science 221, 661–663.

    Article  CAS  Google Scholar 

  20. Ryu, K. and Dordick, J. S. (1992),Biochemistry 31, 2588–2598.

    Article  CAS  Google Scholar 

  21. Tien, M. and Kirk, T. K. (1984),Proc. Natl. Acad. Sci. USA 81, 2280–2284.

    Article  CAS  Google Scholar 

  22. Waters, W. A. and Littler, J. S. (1965), inOxidation in Organic Chemistry, vol. 5a, Wiberg, K. B., ed., Academic, New York, pp. 185–241.

    Google Scholar 

  23. Haschke, R. H. and Freidhoff, J. M. (1978),Biochem. Biophys. Res. Commun. 80, 1039–1042.

    Article  CAS  Google Scholar 

  24. McEldoon, J. P. and Dordick, J. S. (1991),J. Biol. Chem. 266, 14288–14293.

    CAS  Google Scholar 

  25. Aitken, M. D., Vajagopalan, R., and Irvine, R. L. (1989),Water Res. 23, 443–450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinkovsky, A.M., McEldoon, J.P., Arnold, J.M. et al. Peroxidase-catalyzed polymerization and depolymerization of coal in organic solvents. Appl Biochem Biotechnol 49, 153–164 (1994). https://doi.org/10.1007/BF02788549

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788549

Index entries

Navigation