Advertisement

International Journal of Pancreatology

, Volume 17, Issue 1, pp 69–81 | Cite as

Evidence for early oxidative stress in acute pancreatitis

Clues for correction
  • Joan M. Braganza
  • Patrick Scott
  • Diana Bilton
  • David Schofield
  • Christopher Chaloner
  • Neil Shiel
  • Linda P. Hunt
  • Teodoro Bottiglieri
Article

Summary

Pancreatic oxidative stress with depletion of pancreatic glutathione is an early feature in all tested models of acute pancreatitis, and sooner or later the problem extends to the lung, irrespective of disease severity, whether toward spontaneous recovery or death from multisystem organ failure. We, therefore, sought evidence of oxidative stress in the human disease by analyzing admission blood samples. We found it from high concentrations of oxidatively altered linoleic acid in serum and vitamin C in plasma (p<0.001 vs controls or a group of other acute abdominal crises where the proportion of patients with admission Apache II scores <or> 8 was similar). These changes were accompanied by subnormal levels of ascorbic acid in plasma (p<0.001); selenium (p<0.001), β-carotene (p<0.001), and α-tocopherol in serum (p=0.005 for its molar ratio to cholesterol). Paradoxically, the plasma concentration ofS-adenosylmethionine was elevated (p=0.02), suggesting that this proximate bioactive metabolite of the essential amino acid had backtracked because its intracellular metabolism down the methionine trans-sulfuration pathway toward glutathione synthesis was disrupted. The aberrations transcended putative etiological factor, duration of symptoms, or disease severity. We conclude: (1) that oxidative stress has pervaded the vascular compartment by the time of admission in patients with acute pancreatitis, and, (2) that blood micronutrient antioxidant profiles at this stage are consistent not only with compromised intracellular capacity to synthesize/refurbish glutathione, but also vulnerability of intra- and extracellular lipid targets.

Key Words

Acute pancreatitis oxidative stress micronutrient antioxidants sulfur amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braganza JM. Experimental acute pancreatitis.Curr Opin Gastroenterol 1990; 6:763–768.CrossRefGoogle Scholar
  2. 2.
    Braganza JM. The evolution of pancreatitis, inThe Pathogenesis of Pancreatitis, Braganza JM, ed., Manchester University Press, Manchester 1991, pp. 19–23.Google Scholar
  3. 3.
    Durie PR, Gaskin KJ, Ogilvie JE, Smith CR, Forstner CG, Largman C. Serial alterations in the form of immunoreactive pancreatic cationic trypsin in plasma from patients with acute pancreatitis.J Paediatr Gastroenterol Nutr 1985; 4: 199–207.Google Scholar
  4. 4.
    Adler G, Kern HF. Fine structural and biochemical studies in human acute pancreatitis, inPancreatitis: Concepts and Classifications, Gyr KE, Singer MV, Sarles H, eds., Excerpta Medical International Congress series 642, Elsvier, Amsterdam, 1989, pp. 37–42.Google Scholar
  5. 5.
    Sanfey H, Sarr MG, Bulkley GB, Cameron JL. Oxygen-derived free radicals and acute pancreatitis: a review.Acta Physiol Scand Suppl 1986; 548: 109–118.PubMedGoogle Scholar
  6. 6.
    Dabrowksi A, Gabryelewicz A. Oxidative stress: an early phenomenon characteristic of acute experimental pancreatitis.Int J Pancreatol 1992; 12: 193–199.Google Scholar
  7. 7.
    Neuschwander-Tetri BA, Ferrell LD, Sukhabote RJ, Grendell JH. Glutathione monoethyl ester ameliorates caerulein-induced pancreatitis in the mouse.J Clin Invest 1992; 89: 109–116.PubMedCrossRefGoogle Scholar
  8. 8.
    Nordback IH, Clemence JA, Chacko VP, Alson JL, Cameron JL. Changes in high-energy phosphate metabolism and cell morphology in four models of acute experimental pancreatitis.Ann Surg 1991; 213: 341–349.PubMedCrossRefGoogle Scholar
  9. 9.
    Braganza JM. Toxicology of the pancreas, inGeneral and Applied Toxicology, Ballantyne B, Marrs T, Turner P, eds., MacMillan Press, Basingstoke, 1993, pp. 663–714.Google Scholar
  10. 10.
    Steer ML, Meldolesi J. Pathogenesis of acute pancreatitis.Annu Rev Med 1988; 39: 95–108.PubMedCrossRefGoogle Scholar
  11. 11.
    Braganza JM. The role of the liver in exocrine pancreatic disease.Int J Pancreatol 1988; 3: S19-S42.PubMedGoogle Scholar
  12. 12.
    Anderson RJL, Braganza JM, Case RM. Routes of protein secretion in the isolated perfused cat pancreas.Pancreas 1990; 5:394–400.PubMedCrossRefGoogle Scholar
  13. 13.
    Case RM. Secretory polarity, inThe Pathogenesis of Pancreatitis, Braganza JM, ed., Manchester University Press, Manchester, 1991, pp. 34–44.Google Scholar
  14. 14.
    Arvan P, Castle JD. Phasic release of newly synthesised secretory proteins in the unstimulated rat exocrine pancreas.J Cell Biol 1987; 104: 243–252.PubMedCrossRefGoogle Scholar
  15. 15.
    Rinderknecht H. Acute necrotizing pancreatitis and its complications: an excessive reaction of natural defence mechanisms? in ThePathogenesis of Pancreatitis, Braganza JM, ed., Manchester University Press, Manchester, 1991, pp. 86–100.Google Scholar
  16. 16.
    Dabrowski A, Gabryelewicz A, Chyczewski L. The effect of platelet-activating factor antagonist (BN 52021) on caerulin-induced acute pancreatitis with reference to oxygen radicals.Int J Pancreatol 1991; 8: 1–11.PubMedCrossRefGoogle Scholar
  17. 17.
    Guillermo AIS, Lopez-Farre A, gomez-Garr DN, Novo C, Romeo JM, Braquet P, Lopez-Novoa JM. Role of plateletactivating factor in hemodynamic degrangements in an acute rodent pancreatic model.Gastroenterology 1992; 102: 181–187.Google Scholar
  18. 18.
    Formela LJ, Whittaker M, Kingsnorth AN. The role of platelet-activating factor in a model of acute pancreatitis.Gut 1993; 4(Suppl.): T161.Google Scholar
  19. 19.
    Rinderknecht H. Fatal pancreatitis, a consequence of excessive leucocyte stimulation?Int J Pancreatol 1988; 3: 105–112.PubMedGoogle Scholar
  20. 20.
    Braganza JM. Free radicals and pancreatitis, inFree Radicals: Chemistry, Pathology and Medicine, (Proceedings of the Society for Free Radical Research, St. Andrews, July 1987), Rice-Evans C, Dormandy TL, eds., Richelieu, London, 1988, pp. 357–381.Google Scholar
  21. 21.
    Schmidt J, Lewandrowski K, Fernandez-Del Castillo C, Mandavilli U, Compton CC, Warshaw AL, Rattner DW. Histopathologic correlates of serum amylase activity in acute experimental pancreatitis.Dig Dis Sci 1992; 37: 1426–1433.PubMedCrossRefGoogle Scholar
  22. 22.
    Braganza JM, Holmes AM, Moreton AR, Stalley L, Ku R, Kishen R. Acetylcysteine to treat complications of pancreatitis.Lancet 1986; i: 914,915.CrossRefGoogle Scholar
  23. 23.
    Braganza JM. Antioxidant therapy: clinical experience, inThe Pathogenesis of Pancreatitis, Braganza JM, ed., Manchester University Press, Manchester, 1991, pp. 178–197.Google Scholar
  24. 24.
    Royal College of General Practitioners.Alcohol—a balanced view. Report from General Practice 1986; 24.Google Scholar
  25. 25.
    Bradley EL. A clinically based classification system for acute pancreatitis.Arch Surg 1993; 128: 586–590.PubMedGoogle Scholar
  26. 26.
    Bohnen JMA, Mustard RA, Oxholm SE, Schouten BD. Apache II score and abdominal sepsis.Arch Surg 1988; 123: 225–229.PubMedGoogle Scholar
  27. 27.
    Cawood P, Wickens DG, Braganza JM, Dormandy TL. The nature of diene conjugation in biological fluids.FEBS Lett 1983; 162: 239–243.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith GN, Taj M, Braganza JM. On the identification of a conjugated diene component of duodenal bile as 9Z, 11E-octadecadienoic acid.Free Radical Biol Med 1991 10: 13–21.CrossRefGoogle Scholar
  29. 29.
    Iversen SA, Cawood P, Dormandy TL. A method for the measurement of a diene-conjugated derivative of linoleic acid, 18:2 (9,11), in serum phospholipid, and possible origins.Ann Clin Biochem 1985; 22: 137–140.PubMedGoogle Scholar
  30. 30.
    Uden S, Schofield D, Miller PF, Day JP, Bottiglieri T, Braganza JM. Antioxidant therapy in recurrent panceatitis: biochemical profiles in a placebo-controlled trial.Aliment Pharmacol Ther 1992; 6: 229–240.PubMedCrossRefGoogle Scholar
  31. 31.
    Guyan PM, Uden S, Braganza JM. Heightened free radical activity in pancreatitis.Free Radical Biol Med 1990; 8: 347–354.CrossRefGoogle Scholar
  32. 32.
    Britton M, Fong C, Wickens D, Yudkin J. Diet as a source of phospholipid esterified 9,11-octadecadienoic acid in humans.Clin Sci 1992; 83: 97–101.PubMedGoogle Scholar
  33. 33.
    Schofield D, Guyan PM, Braganza JM. Problems with the quantitative analysis of dehydroascorbic acid and ascobic acid in plasma by H.P.L.C.Biochem Soc Transact 1990; 18: 1179,1180.Google Scholar
  34. 34.
    Omaye ST, Turnbull JD, Sauberlich HE, eds.Methods in Enzymology. vol 62, Academic, London, 1979, pp. 3–11.Google Scholar
  35. 35.
    MacPherson AK, Sampson B, Diplock AD. Comparison of methods for the determination of selenium in biological fluids.Analyst 1988; 113: 281–283.PubMedCrossRefGoogle Scholar
  36. 36.
    Braganza JM, Hewitt CD, Day JP. Selum selenium in patients with chronic pancreatitis: lowest values during painful exacerbations.Trace, Elements Med 1988; 5: 79–84.Google Scholar
  37. 37.
    Thurnham DI, Smith E, Flora PS. Concurrent liquid chromatographic assay of retinol, tocopherol, β-carotene, carotene lycopene and β-cryptoxanthin in plasma with tocopherol acetate as internal standard.Clin Chem 1988; 34: 377–381.PubMedGoogle Scholar
  38. 38.
    Stead RJ, Muller DPR, Matthews S, Hodson MD, Batten JC. Effect of abnormal liver function on vitamin E status and supplementation in adults with cystic fibrosis.Gut 1986; 27: 714–718.PubMedCrossRefGoogle Scholar
  39. 39.
    Giulidori P, Stramentinoli G. A radioenzymatic method for S-adenosyl-l-methionine determination in biological fluids.Anal Biochem 1984; 137: 217–220.PubMedCrossRefGoogle Scholar
  40. 40.
    Bailey MTJ.Statistical Methods in Biology. Hodder Stoughton, London, 1976, p. 51.Google Scholar
  41. 41.
    Kuklinski B, Buchner M, Schweder R, Nagel R. Akute pankreatitis—Eine “Free Radical Disease”. Letalitats-senking Durch Natriumselenit (Na2SeO3) Therapie.Z Gesame Inn Med 1991; 5: 7–11.Google Scholar
  42. 42.
    Birk D, Schoenberg MF, Adler G, Beger HG. 1994. Oxidative stress in acute pancreatitis—results of a prospective randomised clinical pilot study.Proceedings of Digestive Disease Week. New Orleans: abstract 1787.Google Scholar
  43. 43.
    Scott P, Bruce C, Schofield D, Shiel N, Braganza JM, McCloy RF. Vitamin C status in patients with acute pancreatitis.Br J Surg 1993; 80:750–754.PubMedCrossRefGoogle Scholar
  44. 44.
    Gross V, Scholmerich J, Leser H-G, Salm R, Lausen M, Ruckauer K, Schoffel U, Lay L, Heinich A, Farthmann EH, Gerok W. Granulocyte elastase in assessment of severity of acute pancreatitis.Dig Dis Sci 1990; 35: 97–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Dominguez-Munoz JE, Carballo F, Garcia MJ, Miguel de Diego J, Gea F, Yanguela J, de al Morena J. Monitoring of serum proteinase-antiproteinase balance and systemic inflammatory repsonse in prognostic evaluation of acute pancreatitis.Dig Dis Sci 1993; 38: 507–513.PubMedCrossRefGoogle Scholar
  46. 46.
    Duswald K-H, Jochum M, Schramm W, Fritz H. Released granulocytic elastase: an indicator of pathobiochemical alterations in septicemia after abdominal surgery.Surgery 1985; 98: 892–899.PubMedGoogle Scholar
  47. 47.
    Vallance S. Changes in plasma and buffy layer vitamin C following surgery.Br J Surg 1988; 75: 366–370.PubMedCrossRefGoogle Scholar
  48. 48.
    Martensson J, Bolin T. Sulphur amino acid metabolism in chronic relapsing pancreatitis.Am J Gastroenterol 1986; 81: 1179–1184.PubMedGoogle Scholar
  49. 49.
    Schofield D, Mei G, Braganza JM. Some pitfalls in the measurement of blood glutathione.Clin Sci 1993; 85: 213–218.PubMedGoogle Scholar
  50. 50.
    Schofield D, Summan, M, Shiel, N, Sharer NM, Braganza JM. Blood glutathione and adenylates in acute pancreatitis.Biochem Soc Transact 1993; 21: 450S.Google Scholar
  51. 51.
    Rao KN, Tuma J, Lombardi B. Acute haemorrhagic pancreatic necrosis in mice.Gastroenterology 1976; 70: 720–726.PubMedGoogle Scholar
  52. 52.
    Timbrell JA.Principles of Biochemical Toxicology. Taylor and Francis, London, 1982.Google Scholar
  53. 53.
    Winkler PS. Unequivocal evidence in support of the non-enzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydro ascorbic acid.Biochim Biophy Acta 1992; 1117: 287–290.Google Scholar
  54. 54.
    Martensson J, Griffiths OW, Meister A. Glutathione ester delays the onset of scurvy in ascorbate-deficient guinea pigs.Proc Natl Acad Sci USA 1993; 90: 317–321.PubMedCrossRefGoogle Scholar
  55. 55.
    Nonaka A, Manabe T, Tobe T. Effect of a new synthetic ascorbic acid derivative as a free radical scavenger on the development of acute pancreatitis in mice.Gut 1991; 32: 528–532.PubMedCrossRefGoogle Scholar
  56. 56.
    Nonaka A, Manabe T, Kyogoku, Tamura K, Tobe T. Evidence for a role of free radicals by synthesised scavenger, 2-octadecylascorbic acid in caerulein-induced mouse acute pancreatitis.Dig Dis Sci 1992; 37: 274–279.PubMedCrossRefGoogle Scholar
  57. 57.
    Niederau C, Ude K, Niederau M, Luthen R, Strohmeyer G, Ferrell LD, Grendell JH. Effects of the seleno-organic substance Ebselen in two different models of acute pancreatitis.Pancreas 1992; 6: 282–290.CrossRefGoogle Scholar
  58. 58.
    Scott PD. Knoop M, McMahon RFT, Braganza JM, Hutchinson IV. S-adenosyl-l-methionine protects against haemorrhagic pancreatitis in partially immunosuppressed pancreaticoduodenal transplant recipients.Drug Invest 1992; 4: 69–77.Google Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Joan M. Braganza
    • 1
  • Patrick Scott
    • 1
  • Diana Bilton
    • 1
  • David Schofield
    • 1
  • Christopher Chaloner
    • 1
  • Neil Shiel
    • 1
  • Linda P. Hunt
    • 1
  • Teodoro Bottiglieri
    • 2
  1. 1.Departments of Medicine (Gastroenterology), Surgery and Faculty of Medicine Computational GroupRoyal InfirmaryManchester
  2. 2.Division of AnaesthesiaClinical Research CentreMiddlesexUK

Personalised recommendations