Skip to main content
Log in

The “Full Müntz Theorem” inL p[0, 1] for 0<p<∞

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ℝ. The principal result of the paper is the following.

Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ⊂ [0, 1] with positive lower density at 0). Let A ⊂ [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than −(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if\(\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } \). Moreover, if\(\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } \), then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ℂ \ (−∞,0] : |z| < rA} restricted to A ∩ (0, rA) where\(r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}\) (m(·) denotes the one-dimensional Lebesgue measure).

This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [An] J. M. Anderson,Müntz-Szász type approximation and the angular growth of lacunary integral functions, Trans. Amer. Math. Soc.169 (1972), 237–248.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ba] J. Bastero, ℓ q -subspaces of stable p-Banach spaces, Arch. Math.40 (1983), 538–544.

    Article  MATH  MathSciNet  Google Scholar 

  • [Be] S. N. Bernstein,Collected Works: Vol 1. Constructive Theory of Functions (1905–1930), English Translation, Atomic Energy Commission, Springfield, Va, 1958.

    Google Scholar 

  • [Boa] R. P. Boas,Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  • [Bo1] P. B. Borwein,Zeros of Chebyshev polynomials in Markov Systems, J. Approx. Theory63 (1990), 56–64.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bo2] P. B. Borwein,Variations on Müntz's theme, Canad. Math. Bull.34 (1991), 305–310.

    MATH  MathSciNet  Google Scholar 

  • [Bo-Er1] P. B. Borwein and T. Erdélyi,Notes on lacunary Müntz polynomials, Israel J. Math.76 (1991), 183–192.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bo-Er2] P. B. Borwein and T. Erdélyi,Lacunary Müntz systems, Proc. Edinburgh Math. Soc.36 (1993), 361–374.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bo-Er3] P. B. Borwein and T. Erdélyi,Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

  • [Bo-Er4] P. B. Borwein and T. Erdélyi,The full Müntz theorem in C[0, 1]and L 1[0, 1], J. London Math. Soc.54 (1996), 102–110.

    MATH  MathSciNet  Google Scholar 

  • [Bo-Er5] P. B. Borwein and T. Erdélyi,The L p version of Newman's inequality for lacunary polynomials, Proc. Amer. Math. Soc.124 (1996), 101–109.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bo-Er6] P. B. Borwein and T. Erdélyi,Generalizations of Müntz's theorem via a Remez-type inequality for Müntz spaces, J. Amer. Math. Soc.10 (1997), 327–329.

    Article  MATH  MathSciNet  Google Scholar 

  • [Bo-Er7] P. B. Borwein and T. Erdélyi,Müntz's Theorem on compact subsets of positive measure, inApproximation Theory (N. K. Govil et al., eds.), Marcel Dekker, New York, 1998, pp. 115–131.

    Google Scholar 

  • [B-E-Z] P. B. Borwein, T. Erdélyi and J. Zhang,Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc.342 (1994), 523–542.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ch] E. W. Cheney,Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  • [Cl-Er] J. A. Clarkson and P. Erdös,Approximation by polynomials, Duke Math. J.10 (1943), 5–11.

    Article  MATH  MathSciNet  Google Scholar 

  • [De-Lo] R. A. DeVore and G. G. Lorentz,Constructive Approximation, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  • [Go] M. von Golitschek,A short proof of Müntz Theorem, J. Approx. Theory39 (1983), 394–395.

    Article  MATH  MathSciNet  Google Scholar 

  • [Jo-Li] W. B. Johnson and J. Lindenstrauss,Basic concepts in the geometry of Banach spaces, inHandbook on the Geometry of Banach Spaces, North-Holland, Amsterdam (to appear).

  • [Ka] N. Kalton,The basic sequence problem, Studia Math.116 (1995), 167–187.

    MATH  MathSciNet  Google Scholar 

  • [K-P-R] N. J. Kalton, N. T. Peck and J. W. Roberts,An F-Space Sampler, London Math. Soc. Lecture Notes Ser. 89, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  • [Li-Tz] J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces I: Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer-Verlag, Berlin-Heidelberg-New York 1977.

    MATH  Google Scholar 

  • [Lu-Ko] W. A. J. Luxemburg and J. Korevaar,Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc.157 (1971), 23–37.

    Article  MATH  MathSciNet  Google Scholar 

  • [Mü] C. Müntz,Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift, Berlin, 1914.

    Google Scholar 

  • [Ne] D. J. Newman,Derivative bounds for Müntz polynomials, J. Approx. Theory85 (1976), 360–362.

    Article  Google Scholar 

  • [Op] V. Operstein,Full Müntz theorem in L p [0, 1], J. Approx. Theory85 (1996), 233–235.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ro] H. L. Royden,Real Analysis, third ed., Macmillan, New York, 1988.

    MATH  Google Scholar 

  • [Sch] L. Schwartz,Etude des Sommes d'Exponentielles, Hermann, Paris, 1959.

    MATH  Google Scholar 

  • [So] G. Somorjai,A Müntz-type problem for rational approximation, Acta Math. Hungar.27 (1976), 197–199.

    Article  MATH  MathSciNet  Google Scholar 

  • [Szá] O. Szász,Über die Approximation steliger Funktionen durch lineare Aggregate von Potenzen, Math. Ann.77 (1916), 482–496.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ta] Sik-Chung Tam,The basic sequence problem for quasi-normed spaces, Arch. Math. (Basel)62 (1994), 69–72.

    MATH  MathSciNet  Google Scholar 

  • [Wo] P. Wojtaszczyk,Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics 25, Cambridge University Press, Cambridge, 1991.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research of T. Erdélyi is supported, in part, by NSF under Grant No. DMS-9623156. Research of W. B. Johnson is supported in part, by NSF under Grants No. DMS-9623260, DMS-9900185, and by Texas Advanced Research Program under Grant No. 010366-163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdélyi, T., Johnson, W.B. The “Full Müntz Theorem” inL p[0, 1] for 0<p<∞. J. Anal. Math. 84, 145–172 (2001). https://doi.org/10.1007/BF02788108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788108

Keywords

Navigation