Skip to main content
Log in

Growth of power series with square root gaps

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

For entire functionsf whose power series have Hadamard gaps with ratio ≥1+α>1, Gaier has shown that the condition |f(x)|≤e x forx≥0 implies |f(z)|≤C αe|z| (*) for allz. Here the result is extended to the case of square root gaps, that is,\(f(z) = \sum {b_{pk} z^{pk} } \), with\(Pk + 1 - Pk \geqslant \alpha \sqrt {Pk} \), where α>0. Smaller gaps cannot work. In connection with his proof of the general high indices theorem for Borel summability, Gaier had shown that square root gaps imply\(b_n = \mathcal{O}\left( {e^{c\sqrt n } /n!} \right)\). Having such an estimate, one can adapt Pitt’s Tauberian method for the restricted Borel high indices theorem to show that, in fact,\(\left| {b_n } \right| \leqslant c_\alpha \sqrt n /n!\), which implies (*). The author also states an equivalent distance formula involving monomialsx pke−xinL (0, ∞).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Anderson and K. G. Binmore,Closure theorems with applications to entire functions with gaps, Trans. Amer. Math. Soc.161 (1971), 381–400, MR44 #6336.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. M. Anderson and D. J. Newman,On the coefficients of lacunary power series, Quart. J. Math. Oxford (2)32 (1981), 1–9 MR82e: 40003.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Erdös,On a high-indices theorem in Borel summability, Acta Math. Acad. Sci. Hungar.7 (1956), 265–281, MR 19, 135g.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. H. J. Fuchs,On the closure of {e −tta ν }. Proc. Cambridge Philos. Soc.42 (1946), 91–105, MR7, 294b.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Gaier,Der allgemeine Lückenumkehrsatz für das Borel-Verfahren, Math. Z.88 (1965), 410–417, MR31 #2535.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Gaier,On the coefficients and the growth of gap power series, SIAM J. Numer. Anal.3 (1966), 248–265, MR34 #4492.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Gaier,Complex variable proofs of Tauberian theorems, Matscience Report No. 56, Inst. of Math. Sciences, Madras, 1967, MR57 #6940.

    MATH  Google Scholar 

  8. G. Halász,Remarks to a paper of D. Gaier on gap theorems, Acta Sci. Math. (Szeged)28 (1967), 311–322. MR36 #4199.

    MathSciNet  MATH  Google Scholar 

  9. G. H. Hardy,Divergent Series, Clarendon Press, Oxford, 1949, MR11, 25a.

    MATH  Google Scholar 

  10. G. H. Hardy and J. E. Littlewood,A further note on the converse of Abel’s theorem, Proc. London Math. Soc. (2)25 (1926), 219–236.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. E. Ingham,On the “high-indices theorem” of Hardy and Littlewood, Quart. J. Math. Oxford (2)8 (1937), 1–8.

    Article  MathSciNet  Google Scholar 

  12. A. E. Ingham,On the high-indices theorem for Borel summability, Abhandlungen aus Zahlentheorie und Analysis, zur Erinnerung an Edmund Landau (1877–1938) (P. Turan, ed.), V.E.B. Deutscher Verlag der Wiss., Berlin, 1968, pp. 119–135. Book also published asNumber Theory and Analysis. A Collection of Papers in Honor of Edmund Landau, Plenum Press, New York, 1969, MR41 #8874.

    Google Scholar 

  13. E. Landau and D. Gaier,Darstellung und Bergründung einiger neuerer Ergebnisse der Funktionentheorie, third enlarged edition, Springer, Berlin, 1986, MR88d: 01046.

    Book  Google Scholar 

  14. A. F. Leont’ev,On the completeness of a system of powers on a semi-axis, Izv. Akad. Nauk SSSR Ser. Mat.26 (1962), 781–792 (Russian), MR26 #4080.

    MathSciNet  MATH  Google Scholar 

  15. G. G. Lorentz,Tauberian theorems and Tauberian conditions Trans. Amer. Math. Soc.63 (1948), 226–234, MR9, 425d.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Malliavin,Sur quelques procédés d’extrapolation. Acta Math.93 (1955), 179–255, MR17, 724c.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Meyer-König and K. Zeller,Lückenumkehrsätze und Lückenperfektheit, Math. Z.66 (1956), 203–224, MR18, 733g.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Müntz,Über den Approximationssatz von Weierstrass, Math. Abhandlungen H. A. Schwarz gewidmet, Berlin, 1914, pp. 303–312.

  19. T. Murai,Gap series, inAnalytic Function Theory of One Complex Variable (Y. Komatu, K. Niino and C.-C. Yang, eds.), Pitman Res. Notes in Math. no. 212, Longman, Harlow, 1989, pp. 149–177, MR91j: 30004.

    Google Scholar 

  20. H. R. Pitt,General Tauberian theorems, Proc. London Math. Soc.44 (1938) 243–288.

    Article  MathSciNet  Google Scholar 

  21. H. R. Pitt,Tauberian Theorems, Oxford Univ. Press, 1958, MR21 #5109.

  22. G. Pólya,Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z.29 (1929), 549–640.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Szász,Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen, Math. Ann.77 (1916), 482–496.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Wiener,Tauberian theorems, Ann. of Math.33 (1932), 1–100.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korevaar, J. Growth of power series with square root gaps. J. Anal. Math. 85, 177–194 (2001). https://doi.org/10.1007/BF02788079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788079

Keywords

Navigation