Skip to main content
Log in

The Borel—Bernstein Theorem for multidimensional continued fractions

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

A central result in the metric theory of continued fractions, the Borel—Bernstein Theorem gives statistical information on the rate of increase of the partial quotients. We introduce a geometrical interpretation of the continued fraction algorithm; then, using this set-up, we generalize it to higher dimensions. In this manner, we can define known multidimensional algorithms such as Jacobi—Perron, Poincaré, Brun, Rauzy induction process for interval exchange transformations, etc. For the standard continued fractions, partial quotients become return times in the geometrical approach. The same definition holds for the multidimensional case. We prove that the Borel—Bernstein Theorem holds for recurrent multidimensional continued fraction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AN] P. Arnoux and A. Nogueira,La mesure de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. Sci. École Norm. Sup. (4)26 (1993), 645–664.

    MathSciNet  MATH  Google Scholar 

  • [Be1] F. Bernstein,Über eine Anwendung der Mengenlehre auf ein aus der Theorie der Säkulärstörungen herrührendes Problem, Math. Ann.71 (1912), 417–439.

    Article  MATH  Google Scholar 

  • [Be2] F. Bernstein,Über geometrische Wahrscheinlichkeit und über das Axiom der beschränkten Arithmetisierbarkeit der Beobachtungen, Math. Ann.72 (1912), 585–587.

    Article  MathSciNet  MATH  Google Scholar 

  • [Bi] P. Billingsley,Ergodic Theory and Information, Wiley Series in Probability and Mathematical Statistics, Wiley, New York, 1965.

    MATH  Google Scholar 

  • [Bo1] E. Borel,Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo27 (1909), 247–271.

    Article  MATH  Google Scholar 

  • [Bo2] E. Borel,Sur un problème de probabilité relatif aux fractions continues, Math. Ann.72 (1912), 578–584.

    Article  MathSciNet  MATH  Google Scholar 

  • [DN1] C. Danthony and A. Nogueira,Involutions linéaires et feuilletages mesurés, C.R. Acad. Sci. Paris, Série I307 (1988), 409–412.

    MathSciNet  MATH  Google Scholar 

  • [DN2] C. Danthony and A. Nogueira,Measured foliations on nonorientable surfaces, Ann. Sci. École Norm. Sup. (4)23 (1990), 469–494.

    MathSciNet  MATH  Google Scholar 

  • [HW] G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, 3rd edn., Oxford University Press, 1979.

  • [Ke] S. Kerckhoff,Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems5 (1985), 257–271.

    Article  MathSciNet  MATH  Google Scholar 

  • [Kh] A Ya. Khinchin,Continued Fractions, Phoenix Books, The University of Chicago, 1964.

  • [L] J. Lagarias,Farey fractions, preprint.

  • [M] H. Masur,Interval exchange transformations and measured foliations, Ann. of Math.,115 (1982), 169–200.

    Article  MathSciNet  MATH  Google Scholar 

  • [N] A. Nogueira,The three-dimensional Poincaré continued fraction algorithm, Israel J. Math.,90 (1995), 373–401.

    Article  MathSciNet  MATH  Google Scholar 

  • [NR] A. Nogueira and D. Rudolph,Topological weak-mixing of interval exchange maps, Ergodic Theory Dynam. Systems17 (1997), 1183–1209.

    Article  MathSciNet  MATH  Google Scholar 

  • [Pa] W. Parry,Ergodic properties of some permutation processes, Biometrika49 (1962), 151–154.

    MathSciNet  MATH  Google Scholar 

  • [Po] H. Poincaré,Sur une généralisation des fractions continues, C. R. Acad. Sci. Paris,99 (1884), 1014–1016. Ourves Complètes de H. Poincaré, tome V, 185–188.

    Google Scholar 

  • [R] G. Rauzy,Echange d’intervalles et transformations induites, Acta Arith.34 (1979), 315–328.

    MathSciNet  MATH  Google Scholar 

  • [S1] F. Schweiger,Metrische Saetze ueber den Jacobischen Algorithmus, Monatsh. Math.,69, (1965), 243–255.

    Article  MathSciNet  MATH  Google Scholar 

  • [S2] F. Schweiger,The Metrical Theory of the Jacobi—Perron Algorithm, Lecture Notes in Math.334, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  • [S3] F. Schweiger,On the Parry-Daniels transformation, Analysis,1 (1981), 171–185.

    MathSciNet  MATH  Google Scholar 

  • [S4] F. Schweiger,Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford University Press, 1995.

  • [V1] W. Veech,Interval, exchange transformations, J. Analyse Math.33 (1978), 222–278.

    Article  MathSciNet  MATH  Google Scholar 

  • [V2] W. Veech,Gauss measures on the space of interval exchange transformations, Ann. of Math.115 (1982), 201–242.

    Article  MathSciNet  MATH  Google Scholar 

  • [V3] W. Veech,The metric theory of interval exchange transformations II, Amer. J. Math.160 (1984), 1361–1387.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the CNP q -Brazil, 301456/80, and FINEP/CNP q /MCT 41.96.0923.00 (PRONEX).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, A. The Borel—Bernstein Theorem for multidimensional continued fractions. J. Anal. Math. 85, 1–41 (2001). https://doi.org/10.1007/BF02788074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788074

Keywords

Navigation