Applied Biochemistry and Biotechnology

, Volume 60, Issue 2, pp 151–158 | Cite as

Purification and properties of carnitine acetyltransferase from citric acid producingAspergillus niger

  • K. Jernejc
  • M. Legiša
Original Articles


Carnitine acetyltransferase was purified from the citric acid producingA. niger mycelium with a protein band showing a relative molecular weight of 77,000 and a pH optimum of 7.3. TheK m values for the purified enzyme for acetyl-CoA and for carnitine were 0.1 mM and 1 mM, respectively. Carnitine acetyltransferase was located both in the mitochondria and in the cytosol. Both mitochondrial and cytosolic enzyme were purified using ammonium sulfate precipitation, Mono Q and Superose 12 separation. Regarding the localization, except for maximum velocity, there were no differences observed in substrate specificity and inhibition. Inhibition of the enzyme with micromolar concentrations of Cu2+ could contribute to a greater citric acid biosynthesis. Carnitine acetyltransferase can be considered as an enzyme necessary for the transport of acetyl groups through mitochondrial membrane in both directions.

Index entries

Carnitine acetyltransferase citric acid Aspergillus niger enzyme kinetics inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Srere, P. A. (1965),Nature 205, 766–770.CrossRefGoogle Scholar
  2. 2.
    Bloisi, W., Colombo, I., Caravaglia, B., Giardini R., and Finocchiaro, G.(1990),Eur. J. Biochem. 189, 539–546.CrossRefGoogle Scholar
  3. 3.
    Ratledge, C. and Gilbert, S. C. (1985),FEMS Microbiol. Lett. 27, 88–91.CrossRefGoogle Scholar
  4. 4.
    Kozulic, B., Kappeli, O., Meussdoerffer, F., and Fiechter, A. (1987),Eur. J. Biochem. 168, 245–250.CrossRefGoogle Scholar
  5. 5.
    Kozulic, B., Mosbach, K., and Meussdoerffer, F. (1988),Biochem. J. 253, 845–849.Google Scholar
  6. 6.
    Ueda, M., Tanaka, A., and Fukui, S. (1984),Eur. J. Biochem. 138, 445–449.CrossRefGoogle Scholar
  7. 7.
    Ueda, M., Tanaka, A., and Fukui, S. (1985),Arch. Microbiol. 141, 29–31.CrossRefGoogle Scholar
  8. 8.
    Pfitzner, A., Kubicek, C. P., and Roehr, M. (1987),Arch. Microbiol. 147, 88–91.CrossRefGoogle Scholar
  9. 9.
    Jernejc, K., Perdih, A., and Cimerman, A. (1991),Appl. Microbiol. Biotechnol. 36, 92–95.CrossRefGoogle Scholar
  10. 10.
    Jernejc, K., Cimerman, A., and Perdih, A. (1982),Eur. J. Appl. Microbiol. Biotechnol. 14, 29–33.CrossRefGoogle Scholar
  11. 11.
    Kohlhaw, G. B. and Tan-Wilson, A. (1977),J. Bacteriol. 129, 1159–1161.Google Scholar
  12. 12.
    Watson, K. and Smith, J. E. (1968),J. Bacteriol. 96, 1546–1550.Google Scholar
  13. 13.
    Bradford, M. M. (1976),Anal. Biochem. 72, 148–254.CrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970),Nature 227, 680–685.CrossRefGoogle Scholar
  15. 15.
    Claus, R., Kappeli, O., and Fiechter, A. (1982),Anal. Biochem. 127, 376–379.CrossRefGoogle Scholar
  16. 16.
    Kispal, G., Cseko, J., Alkonyi, I., and Sandor, A. (1991),Biochem. Biophys. Acta 1085, 217–222.Google Scholar
  17. 17.
    Colluci, W. J. and Grandour, R. D. (1988),Bioorg. Chem. 16, 307–334.CrossRefGoogle Scholar
  18. 18.
    Ueda, M., Tanaka, A., and Fukui, S. (1982),Eur. J. Biochem. 124, 205–210.CrossRefGoogle Scholar
  19. 19.
    Mijazawa, S., Ozasa, H., Furuta, S., Osumi, T., and Hashimoto, T. (1983),J. Biochem. 93, 439–451.Google Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • K. Jernejc
    • 1
  • M. Legiša
  1. 1.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations