Skip to main content
Log in

Antigen-antibody binding kinetics for biosensors

Changes in the Fractal Dimension (Surface Roughness) and in the Binding Rate Coefficient

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The diffusion-limited binding kinetics of antigen in solution to antibody immobilized on a biosensor surface is analyzed within a fractal framework. Changes in the fractal dimension, Df observed are in the same and in the reverse directions as the forward binding rate coefficientk. For example, an increase in the concentration of the isoenzyme human creatine kinase isoenzyme MB form (CK-MB) (antigen) solution from 0.1 to 50 ng/mL and bound to anti-CK-MB antibody immobilized on fused silica fiber rods leads to increases in the fractal dimension Df from 0.294 to 0.5080, and in the forward binding rate coefficientk from 0.1194 to 9.716, respectively. The error in the fractal dimension Df decreases with an increase in the CK-MB isoenzyme concentration in solution. An increase in the concentration of human chorionic gonadotrophin (hCG) in solution from 4000 to 6000 mIU/mL hCG and bound to anti-hCG antibody immobilized on a fluorescence capillary fill device leads to a decrease in the fractal dimension Df from 2.6806 to 2.6164, and to an increase in the forward binding rate coefficientk from 3.571 to 4.033, respectively. The different examples analyzed and presented together indicate one means by which the forward binding rate coefficientk may be controlled, that is by changing the fractal dimension or the ‘disorder’ on the surface. The analysis should assist in helping to improve the stability, the sensitivity, and the response time of biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluestein, B. I., Craig, M., Slovacek, R., Stundtner, L., Uricouli, C., Walczak, I., and Luderer, A. (1991), inBiosensors with Fiberoptics, Wise, D., and Wingard, Jr., L. B., eds., Humana, Clifton, NJ, pp. 181–223.

    Google Scholar 

  2. Eddowes, M. J. (1987/1988), Biosensors3, 1–15.

    Article  CAS  Google Scholar 

  3. Giaver, I. (1976),J. Immunol. 116, 766–771.

    Google Scholar 

  4. Nygren, H. and Stenberg, M. (1985),J. Colloid Interf. Sci. 1985 107, 560–566.

    Article  CAS  Google Scholar 

  5. Sadana, A. and Sii, D. (1992a),J. Colloid Interf. Sci. 151 (1), 166–177.

    Article  CAS  Google Scholar 

  6. Sadana, A. and Sii, D. (1992b),Biosensors Bioelectron 7, 559–568.

    Article  CAS  Google Scholar 

  7. Sadana, A. and Madagula, A. (1993),Biotechnol. Progr. 9, 259–266.

    Article  CAS  Google Scholar 

  8. Stenberg, M. and Nygren, H. A. (1982),Anal. Biochem. 127, 183–192.

    Article  CAS  Google Scholar 

  9. Douglas, J. F. (1989),Macromolecules 22, 3707–3716.

    Article  CAS  Google Scholar 

  10. Mandelbrot, B. B. (1982),The Fractal Geometry of Nature. Freeman, San Francisco.

    Google Scholar 

  11. Kopelman, R. (1988),Science 241, 1620–1626.

    Article  CAS  Google Scholar 

  12. Pfeifer, P. and Obert, M. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, pp. 11–43.

    Google Scholar 

  13. Nyikos, L. and Pajkossy, T. (1986),Electrochim. Acta. 31, 1347–1350.

    Article  CAS  Google Scholar 

  14. Skinner, J. E. (1994),Bio/Technology 1994 12, 596–600.

    Article  CAS  Google Scholar 

  15. Cross, M. C. and Hohenberg, P. C. (1994),Science 263, 1569–1570.

    Article  Google Scholar 

  16. Friesen, W. I. and Laidlaw, W. G. (1993),J. Colloid Interf. Sci. 160, 226–235.

    Article  CAS  Google Scholar 

  17. Douglas, J. F., Johnson, H. E., and Garnick, S. (1993),Science 242, 2010–2012.

    Article  Google Scholar 

  18. Liebovitch, L. S. and Sullivan, J. M. (1987a)Biophys. J. 52, 979–988.

    Article  CAS  Google Scholar 

  19. Liebovitch, L. S., Fischbarg, J., Koniarek, J. P., Todorova, I., and Wang, M. (1987b),Math. Biosci. 84, 37–68.

    Article  Google Scholar 

  20. Li, H., Chen, S., and Zhao, H. (1990),Biophys. J. 58, 1313–1320.

    CAS  Google Scholar 

  21. Dewey, T. G. and Bann, J. G. (1992),Biophys. J. 63, 594–598.

    CAS  Google Scholar 

  22. Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, C. K., Stanley, H. E., Stanley, M. H. R., and Simons, M. (1993),Biophys. J. 65, 2673–2679.

    CAS  Google Scholar 

  23. Goetze, T. and Brickmann, J. (1992),Biophys. J. 61, 109–118.

    CAS  Google Scholar 

  24. Di Cera, E. (1991),J. Chem. Phys. 95 (7), 5082–5086.

    Article  Google Scholar 

  25. Cuypers, P. A., Willems, G. M., Kop, J. M., Corsel, J. W., Jansen, M. P., and Hermens, W. T. (1987), inProteins at Interfaces. Physicochemical and Biochemical Studies, Brash, J. L., Horbett, Jr., T. A., eds., American Chemical Society, Washington, DC, pp. 208–211.

    Google Scholar 

  26. Sadana, A. and Beela Ram, A. (1994),Biotechnol. Progr. 10, 291–298.

    Article  CAS  Google Scholar 

  27. Sadana, A. (1995),Biotechnol. Prog. 11, 50–57.

    Article  CAS  Google Scholar 

  28. Anderson, J. NIH Panel Review Meeting, Case Western Reserve University, Cleveland, OH, July 1993.

    Google Scholar 

  29. De Gennes, P. G.(1982),Radiat. Phys. Chem. 22, 193–196.

    Google Scholar 

  30. Pfeifer, P., Avnir, D., and Farin, D. J. (1984a),Nature (London) 308 (5956, 261–263.

    Article  Google Scholar 

  31. Pfeifer, P., Avnir, D., and Farin, D. J. (1984b),J. Colloid Interf. Sci. 103 (1), 112–123.

    Google Scholar 

  32. Havlin, S. (1989), inThe Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers, Avnir, D., ed., Wiley, New York, NY, pp. 251–269.

    Google Scholar 

  33. Walczak, I. M., Love, W. F., Cook, T. A., and Slovacek, R. E.Biosens. Bioelectron. 1992,7, 39–48.

    Article  CAS  Google Scholar 

  34. Sigmaplot (1993) Scientific Graphing Software, User’s Manual, Jandel Scientific, San Rafael, CA.

    Google Scholar 

  35. Vlad, M. O. (1993),J. Colloid Interf. Sci. 159, 21–27.

    Article  CAS  Google Scholar 

  36. Schramm, W. and Paek, S. H. (1992),Biosensors Bioelectron 7, 103–114.

    Article  CAS  Google Scholar 

  37. Deacon, J. K., Thomson, A. M., Page, A. L., Stops, J. E., Roberts, P. R., Whiteley, S. C, Attridge, J. W., Love, C. A., Robinson, G. A., and Davidson, G. P. (1991),Biosensors Bioelectron 6, 193–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadana, A., Ram, A.B. Antigen-antibody binding kinetics for biosensors. Appl Biochem Biotechnol 60, 123–138 (1996). https://doi.org/10.1007/BF02788067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788067

Index entries

Navigation