Skip to main content
Log in

Determination of cyanide using a microbial sensor

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A microbial cyanide sensor was prepared, consisting of immobilizedSaccharomyces cerevisiae and an oxygen electrode. When the electrode was inserted into a solution containing glucose, the respiration activity of the microorganisms increased. The change in the respiration activity is monitored with the oxygen electrode. When cyanide is added to the sample solution, the electron transport chain reaction of the respiration system in the mitochondria is inhibited, resulting in a decrease in respiration. The inhibition is caused by cyanide binding with respiration enzymes such as the cytochrome oxidase complex in the mitochondrial inner membrane. Therefore, the cyanide concentration can be measured from the change in the respiration rate. When the sensor was applied to a batch system at pH 8.0 and 30°C, the cyanide calibration curve showed linearity in the concentration range between 0.3 μM and 150 μM CN-.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franson, M. A., ed. (1980),Standard Methods for the Examination of Water and Wastewater, 15th ed., American Public Health Association, Washington, DC.

    Google Scholar 

  2. Eeden, C. H. van and Jong, A. W. de. (1985),Z. Lebensm. Unters. Forsch. 181, 412–416.

    Article  Google Scholar 

  3. Frant, M. S., Ross, J. W., and Riseman, J. H. (1972),Anal. Chem. 44, 2227–2230.

    Article  CAS  Google Scholar 

  4. Fonong, T. (1987),Analyst 112, 1033–1035.

    Article  CAS  Google Scholar 

  5. Mattiasson, B. and Mosbach, K. (1977),Biotechnol. Bioeng. 19, 1643–1651.

    Article  CAS  Google Scholar 

  6. Mattiasson, B., Rieke, E., Munecke, D., and Mosbach, K. (1979),J. Solid-Phase. Biochem. 4, 263.

    Article  CAS  Google Scholar 

  7. Groom, C. A. and Luong, J. H. T. (1991),J. Biotechnol. 21, 161–172.

    Article  CAS  Google Scholar 

  8. Karube, I., Matsunaga, T., Mishuda, S., and Suzuki, S. (1977),Biotechnol. Bioeng. 19, 1535–1547.

    Article  CAS  Google Scholar 

  9. Hikuma, M., Suzuki, H., Yasuda, T., Karube, I., and Suzuki, S. (1979),Europ. J. Appl. Microbiol. Biotechnol. 8, 289–297.

    Article  CAS  Google Scholar 

  10. Karube, I. and Nakanishi, K. (1993),Current Opinion in Biotechnology 5, 54–59.

    Article  Google Scholar 

  11. Karube, I. and Nakanishi, K. (1994),IEEE Engineering in Medicine and Biology 13.3, 365–374.

    Google Scholar 

  12. Karube, I. and Suzuki, M. (1990), inBiosensor, Cass, A. E. G., ed., IRL, Oxford, pp. 155–170.

    Google Scholar 

  13. Zollner, H. (1989),Handbook of enzyme inhibitors, VCH Verlagsgesellschaft, Weinheim, Germany, pp. 273,274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakanishi, K., Ikebukuro, K. & Karube, I. Determination of cyanide using a microbial sensor. Appl Biochem Biotechnol 60, 97–106 (1996). https://doi.org/10.1007/BF02788064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788064

Index entries

Navigation