Applied Biochemistry and Biotechnology

, Volume 42, Issue 2–3, pp 105–118 | Cite as

Acid pyrophosphatase from red kidney beans

  • L. M. Leong
  • K. K. Ho


Partial purification of acid pyrophosphatase activity from dried red kidney beans was achieved. The crude enzyme was found to adhere to plastic and was very unstable. These problems were solved by extraction with low pH and high-ionic-strength buffers. This extraction procedure separated acid pyrophosphatase activity into three parts. One of these activities appears to correspond to the purple phosphatase isolated by other workers (1—3). The other two fractions showed both general phosphomonoesterase and pyrophosphatase activity, but were most active with pyrophosphate and were used for further characterization. The pH optimum for the enzyme was approx 5.5-6.0 with pyrophosphatase, and it exhibited substrate inhibition with pyrophosphate and ATP at low pH. The partially purified acid pyrophosphatase was estimated to be a dimer of approx 98 kDa (mol wt estimated by gel filtration on Sephacryl S-200) with no detectable carbohydrate or iron content. Of the cations tested for their effect on pyrophosphatase activity, iron was the most inhibitory, followed by magnesium and zinc.

Index Entry

Enzyme purification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nochumson, S., O’Rangers, J. J., and Dimitrov, N. V. (1974),Fed. Proc. 33, 1378.Google Scholar
  2. 2.
    Beck, J. L., Mcconachie, L. A., Summors, A. C., Arnold, W. N., Jersey, J. D., and Zerner, B. (1986),Biochim. Biophys. Acta 869, 61–68.Google Scholar
  3. 3.
    Beck, J. L., Mcarthur, M. J., De Jersey, J., and Zerner, B. (1988),Inorg. Chim. Acta. 153, 39–44.CrossRefGoogle Scholar
  4. 4.
    Shinshi, H., Miwa, M., Kato, K., Noguchi, M., Matsushima, T., and Sugimura, T. (1976),Biochem. 15, 2185–2190.CrossRefGoogle Scholar
  5. 5.
    Efstratiadis, A., Vournakis, J. N., Donis-Keller, H., Chaconas, G., Dougall, D. K., and Kafatos, F. C. (1977),Nucleic Acids. Res. 4, 4165–4174.CrossRefGoogle Scholar
  6. 6.
    D’Alessio, J. D. (1982), RNA sequencing, inGel Electrophoresis of Nucleic Acids: A Practical Approach, Rickwood, D. and Hames, B. D., eds., IRL Press, Oxford, Washington, D.C. pp. 173–197.Google Scholar
  7. 7.
    Naganna, B. and Sripathi, C. E. (1954),Nature 174, 593–594.CrossRefGoogle Scholar
  8. 8.
    Naganna, B., Ramon, A., Venugopal, B., and Sripathi, C. E. (1955),Biochem. J. 60, 215–223.Google Scholar
  9. 9.
    Fiske, C. H. and SubbaRow, Y. (1925),J. Biol. Chem. 66, 375–400.Google Scholar
  10. 10.
    Heinonen, J. K. and Lahti, R. J. (1981),Anal. Biochem. 113, 313–317.CrossRefGoogle Scholar
  11. 11.
    Slater, E. C. (1949),Biochem. J. 45, 1–5.Google Scholar
  12. 12.
    Davis, B. J. (1964),Ann. NY Acad. Sci. 121, 404.CrossRefGoogle Scholar
  13. 13.
    Zlotnick, G. W. and Gottlieb, M. (1986),Anal. Biochem. 153, 1221–1225.CrossRefGoogle Scholar
  14. 14.
    Doerner, K. C. and White, B. A. (1990),Anal. Biochem. 187, 147–150.CrossRefGoogle Scholar
  15. 15.
    Park, H. C. and Van Etten, R. L. (1986),Phytochem. 25, 351–357.CrossRefGoogle Scholar
  16. 16.
    Ullah, A. H. J. and Gibson, D. M. (1988),Arch. Biochem. Biophys. 260, 514–520.CrossRefGoogle Scholar
  17. 17.
    Kar, M., Patra, H. K., and Mishra, D. (1978),Physiol. Plant. 43, 287–291.CrossRefGoogle Scholar
  18. 18.
    Lin, M. S. and Kao, C. H. (1990),J. Plant Physiol. 137, 141–145.Google Scholar
  19. 19.
    Bennet, V. L., Ristrophe, D. L., Hamming, J. J., and Butler, L. G. (1973),Biochim. Biophys. Acta 293, 232–241.Google Scholar
  20. 20.
    Moe, O. A. and Butler, L. G. (1972),J. Biol. Chem. 247, 7308–7314.Google Scholar
  21. 21.
    Ridlington, J. W. and Butler, L. G. (1972),J. Biol. Chem. 247, 7303–7307.Google Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • L. M. Leong
    • 1
  • K. K. Ho
    • 1
  1. 1.Department of Botany, Faculty of ScienceNational University of SingaporeSingapore

Personalised recommendations