Advertisement

Journal d’Analyse Mathématique

, Volume 71, Issue 1, pp 173–193 | Cite as

The rozenblum-lieb-cwikel inequality for markov generators

  • Daniel Levin
  • Michael Solomyak
Article

Keywords

Quadratic Form Heat Kernel Asymptotic Formula Hyperbolic Space Sobolev Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Sh. Birman,On the spectrum of singular boundary-value problems, Mat. Sbornik55 (1961), 125–174. (Russian)MathSciNetGoogle Scholar
  2. [2]
    M. Sh. Birman and M. Z. Solomyak,Quantitive analysis in Sobolev imbedding theorems and applications to spectral theory, Tenth Mathematical School, Izd. Inst. Mat. Akad. Nauk Ukrain. SSSR, Kiev, 1974, pp. 5–189 (Russian); English transl, in Amer. Math. Soc. Transi. (2)114 (1980), 1–132.Google Scholar
  3. [3]
    M. Sh. Birman and M. Z. Solomyak,Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations, Advances in Soviet Math.7 (1991), 1–55.MathSciNetGoogle Scholar
  4. [4]
    J. P. Conlon,A new proof of the Cwikel-Lieb-Rosenbljum bound, Rocky Mountain J. Math.15 (1985), 117–122.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Cupala,The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms, Studia Math.113 (2) (1995), 109–125.MATHMathSciNetGoogle Scholar
  6. [6]
    M. Cwikel,Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2)106 (1977), 93–100.CrossRefMathSciNetGoogle Scholar
  7. [7]
    E. B. Davies,Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.MATHGoogle Scholar
  8. [8]
    E. Hebey,Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci curvature bounded below and positive injectivity radius, Amer. J. Math.118 (1996), 291–300.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Li and S-T. Yau,On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys.88 (1983), 309–318.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    E. Lieb,Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. Amer. Math. Soc.82 (1976), 751–753.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    V. Liskevich and Yu. Semenov,Some problems on Markov semigroups, inAdvances in Partial Differential Equations, Akademie Verlag, Berlin, 1996 (in press).Google Scholar
  12. [12]
    V. G. Maz’ya,Sobolev spaces, Izdat. Leningr. Univ., Leningrad, 1985 (Russian); English transi.: Springer-Verlag, Berlin, 1985.Google Scholar
  13. [13]
    G. V. Rozenblyum,The distribution of the discrete spectrum for singular differential operators, Dokl. Akad. Nauk SSSR202 (1972), 1012–1015. (Russian).MathSciNetGoogle Scholar
  14. [14]
    B. Simon,Weak trace ideals and number of bound states of Schrödinger operator, Trans. Amer. Math. Soc.224 (1976), 367–380.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Solomyak,On the negative discrete spectrum of the operator δN — αVfor a class of unbounded domains in Rd, inProc. of the Conference in PDE, Toronto, 1996 (in press).Google Scholar
  16. [16]
    N. Th. Varopoulos,Small time Gaussian estimates of heat diffusion kernels. Part I: The semigroup technique, Bull. Sci. Math.113 (1989), 253–277.MATHMathSciNetGoogle Scholar
  17. [17]
    N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon,Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992.Google Scholar
  18. [18]
    A. C. Zaanen,Riesz Spaces II, North-Holland, Amsterdam-New York-Oxford, 1983.MATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1997

Authors and Affiliations

  1. 1.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Theoretical MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations