Applied Biochemistry and Biotechnology

, Volume 62, Issue 2–3, pp 275–290 | Cite as

Antigen-antibody binding kinetics for biosensor applications

A Dual-Fractal Analysis
  • Ajit Sadana
  • Milind Suturia


The diffusion-limited binding kinetics of antigen (or antibody) in solution to antibody (or antigen) immobilized on a biosensor surface is analyzed within a fractal framework. The fit obtained by a dual-fractal analysis is compared with that obtained from a single-fractal analysis. In some cases, the dual-fractal analysis provides an improved fit when compared with a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (San Rafael, CA). These examples are presented. It is of interest to note that the state of disorder (or the fractal dimension) and the binding rate coefficient both increase (or decrease, a single example is presented for this case) as the reaction progresses on the biosensor surface. For example, for the binding of monoclonal antibody MAb 49 in solution to surface-immobilized antigen, a 90.4% increase in the fractal dimension (Df1 toD f2 ) from 1.327 to 2.527 leads to an increase in the binding rate coefficient (k1 to k2) by a factor of 9.4 from 11.74 to 110.3. The different examples analyzed and presented together provide a means by which the antigen-antibody reactions may be better controlled by noting the magnitude of the changes in the fractal dimension and in the binding rate coefficient as the reaction progresses on the biosensor surface.

Index Entries

Antigen-antibody binding kinetics fractals biosensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pisarchick, M. L., Gesty, D. and Thompson, N. L. (1992),Biophys. J. 63, 215–223.CrossRefGoogle Scholar
  2. 2.
    McLean, M. A., Stayton, P. S., and Sligar, S. G. (1993),Anal. Chem. 65, 2676–2678.CrossRefGoogle Scholar
  3. 3.
    Maxia, L., Radicchi, G., Pepe, I. M., and Nicolini, C. (1995),Biophys. J. 69, 1440–1446.Google Scholar
  4. 4.
    Dubrovsky, T., Tronin, A., Dubrovskaya, S., Vakula, S., and Nicolini, C. (1995),Sensors Actuators B23, 1–7.Google Scholar
  5. 5.
    Bluestein, B.I., Craig, M., Slovacek, R., Stundtner, L., Uricouli, C., Walziak, I., Luderer, A. (1991), inBiosensors With Fiberoptics, Wise, D. and Wingard, Jr., L.B., eds., Humana, Clifton, NJ, pp. 181–223.Google Scholar
  6. 6.
    Eddowes, E. (1987/1988),Biosensors 3, 1–15.CrossRefGoogle Scholar
  7. 7.
    Giaver, I. (1976),J. Immunol. 116, 766–771.Google Scholar
  8. 8.
    Stenberg, M., Stiblert, L. and Nygren, H. A. (1986), External Diffusion Solid-Phase Immunoassay.J. Theor. Biol. 120, 129–142.CrossRefGoogle Scholar
  9. 9.
    Nygren, H. A. and Stenberg, M. (1985),J. Colloid Interf. Sci. 107, 560–566.CrossRefGoogle Scholar
  10. 10.
    Stenberg, M. and Nygren, H. A. (1982),Anal. Biochem. 127, 183–192.CrossRefGoogle Scholar
  11. 11.
    Sadana, A. and Sii, D. (1992),Biosens. Bioelectron. 7, 559–568.CrossRefGoogle Scholar
  12. 12.
    Sadana, A. and Sii, D. (1992),J. Colloid Interf. Sci. 151, 166–177.CrossRefGoogle Scholar
  13. 13.
    Sadana, A. and Madagula, A. (1993),Biotechnol. Progr. 9, 259–266.CrossRefGoogle Scholar
  14. 14.
    Sadana, A., Alarie, J. P. and Vo-Dinh, T. (1995),Talanta 42, 1567–1574.CrossRefGoogle Scholar
  15. 15.
    Douglas, J. F. (1989),Macromolecules 22, 3707–3716.CrossRefGoogle Scholar
  16. 16.
    Ortega-Vinuesa, J. L., Bastos-Gonzalez, D. and Hidalgo-Alvarez, R. (1995),J. Colloid Interf. Sci. 176, 240–247.CrossRefGoogle Scholar
  17. 17.
    Kopelman, R. (1988),Science 241, 1620–1626.CrossRefGoogle Scholar
  18. 18.
    Metzler, R., Glockle, W. G., and Nonnenmacher, T. F. (1994),Physica A 211, 13–24.CrossRefGoogle Scholar
  19. 19.
    Giona, M. and Roman, H. E. (1992),Physica A 185, 87–97.CrossRefGoogle Scholar
  20. 20.
    Werthen, M. and Nygren, H. A. (1993),Biochim. Biophys. Acta 1162, 326–332.Google Scholar
  21. 21.
    Pfeifer, P. and Obert, M. (1989), inThe Fractal Approach To Heterogeneous Chemistry: Surfaces, Colloids, Polymers; Avnir, D., ed., J. Wiley & Sons, New York, NY, pp. 11–43.Google Scholar
  22. 22.
    Sadana, A. and Beelaram, A. (1994),Biotechnol. Progr. 10, 291–298.CrossRefGoogle Scholar
  23. 23.
    Sadana, A. and Beelaram, A. (1995),Biosens. Bioelectron. 10, 301–316.CrossRefGoogle Scholar
  24. 24.
    Sadana, A. and Beelaram, A. (1996),Appl. Biochem. Biotechnol. 60, 123.CrossRefGoogle Scholar
  25. 25.
    Sadana, A. and Beelaram, A. (1997),Appl. Biochem. Biotechnol. (in press).Google Scholar
  26. 26.
    Sadana, A. and Madagula A. (1994),Biosens. Bioelectron. 9, 45–55.CrossRefGoogle Scholar
  27. 27.
    Sadana, A. (1995),Biotechnol. Progr. 11, 50–57.CrossRefGoogle Scholar
  28. 28.
    Skinner, J. E. (1994),Bio/Technology 12, 596–600.CrossRefGoogle Scholar
  29. 29.
    Cross, M. C. and Hohenberg, P. C. (1994),Science 263, 1569–1570.CrossRefGoogle Scholar
  30. 30.
    Vlad, M. O. (1993),J. Colloid Interf. Sci. 159, 21–27.CrossRefGoogle Scholar
  31. 31.
    Friesen, W. I. and Laidlaw, W. G. (1993),J. Colloid Interf. Sci. 160, 226–235.CrossRefGoogle Scholar
  32. 32.
    Glockle, W. G. and Nonnenmacher, T. F. (1995),Biophys. J. 68, 46–53.Google Scholar
  33. 33.
    Shlesinger, M. F., Zaslavsky, G. M., and Klafter, J. (1993),Nature 363, 31–37.CrossRefGoogle Scholar
  34. 34.
    Rabinovich, S. and Agmon, N. (1993),Phys. Rev. E 47, 3717–3720.CrossRefGoogle Scholar
  35. 35.
    Di Cera, E. (1991),J. Chem. Phys. 95, 5082–5086.CrossRefGoogle Scholar
  36. 36.
    Cuypers, P. A., Willems, G. M., Kop, J. M., Corsel, J. W., Jansen, M. P., and Hermens, W. T. (1987), inProteins At Interfaces. Physicochemical And Biochemical Studies. Brash, J. L., and Horbett T.A., eds., American Chemical Society, Washington, DC., pp. 208–211.Google Scholar
  37. 37.
    Anderson, J., (1993), NIH Panel Review Meeting, Case Western Reserve University, Cleveland, OH.Google Scholar
  38. 38.
    Degermes, P. G. (1982),Radiat. Phys. Chem. 22, 193–196.Google Scholar
  39. 39.
    Pfeifer, P., Avnir, D. and Farrin, D. J. (1984a),Nature 308, 261–263.CrossRefGoogle Scholar
  40. 40.
    Pfeifer, P., Avnir, D. and Farin, D. J. (1984b),J. Colloid Interf. Sci. 103, 112–123.Google Scholar
  41. 41.
    Nyikos, L. and Pajkossy, T. (1986),Electrochim. Acta 31, 1347–1350.CrossRefGoogle Scholar
  42. 42.
    Havlin, S. (1989), inThe Fractal Approach To Heterogeneous Chemistry: Surfaces, Colloids, Polymers; Avnir, D., ed., J. Wiley & Sons, New York, NY, pp. 251–269.Google Scholar
  43. 42.
    Zhao, S. and Reichert, W. M. (1992),Langmuir 8, 2785–2791.CrossRefGoogle Scholar
  44. 43.
    Nygren, H. A. (1994),Biophys. Chem. 52, 45–50.CrossRefGoogle Scholar
  45. 44.
    Mason, D. W. and Williams, A. F. (1980),Biochem. J. 187, 1–20.Google Scholar
  46. 45.
    Letarte-Muirhead, M., Acton, R. T., and Williams, A. F. (1974),Biochem. J. 143, 51–61.Google Scholar
  47. 46.
    Letarte-Muirhead, M., Barclay, A.N. and Williams, A.F. (1975),Biochem. J. 151, 685–697.Google Scholar
  48. 47.
    Fabre, J. W. and Williams, A. F. (1997),Transplantation 23, 349–359.CrossRefGoogle Scholar
  49. 48.
    MacDonald, M. E., Letarte-Muirhead, M., and Bernstein, A. (1978),J. Cell Physiol. 96, 291–302.CrossRefGoogle Scholar
  50. 49.
    Dalchau, R. and Fabre, J. W. (1979),J. Exp. Med. 149, 576–591.CrossRefGoogle Scholar
  51. 50.
    Sepaniak, M. J., Tromberg, B. J., and Estham, J. F. (1983),Chin, Chem. 29, 1678.Google Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversity of MississippiMS

Personalised recommendations