Skip to main content
Log in

Production and partial characterization of extracellular peroxidases produced bystreptomyces avermitilis UAH30

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of a number of environmental parameters (pH, temperature, carbon and nitrogen ratio of nutrient) on the production of extracellular peroxidase enzymes byStreptomyces avermitilis UAH30 was examined. Maximum specific peroxidase activity (0.12 U/mg of protein) was obtained after 72 hours of 1 incubation at 45‡C in a minimal salt medium (pH 7.5) containing 0.6% (w/v) yeast extract and 0.6% (w/v) xylan corresponding to a C:N ratio of 4 to 1. A study of the effect of incubation on peroxidase activity showed that the enzyme was stable and active for at least one hour after incubation at 50‡C while at higher temperatures the stability and activity of the peroxidase was reduced such that at 60‡C the peroxidase activity has a half life of 20 min while at 80‡C the half life was reduced to 5 min. The activation energy for deactivation as a result of thermal denaturation of the enzyme was calculated to be 80 ±7 kJ/mol. The optimum pH for the activity occurred between a pH range of 6.5–8.5 with pKa1 and pKa2 of 5.1 ±0.1 and 9.7 ±0.1, respectively. The Km and Vmax for the peroxidase activity were determined to be 1.45 mM and 0.31 unit per mg protein respectively using 2,4dicholorophenol (2,4-DCP) as a substrate. Characterization of the peroxidase activity revealed activity against L,3–4 dihydroxyphenylalanine and guaiacol, while no inhibition of peroxidase activity could be detected with the haem inhibitors such as potassium cyanide and sodium azide, suggesting the lack of haem component in the tertiary structure. Aspects of using the crude peroxidase preparation in the pulp and paper industry are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van-Pee, K. H. and Lingens, F. (1984),FEBS Lett. 173, 5–8.

    Article  CAS  Google Scholar 

  2. Welinder, K. G. (1985),Eur. J. Biochem. 151, 447–450.

    Google Scholar 

  3. Itho, N., Izumi, Y., and Yamanda, H. (1986),J. Biol. Chem. 261, 5194–5200.

    Google Scholar 

  4. Van-Pee, K. H., and Lingens, F. J. (1985),J. Bacteriol. 161, 1171–1175.

    CAS  Google Scholar 

  5. Zeiner, R., Van-pee, K. H., and Lingens, F. (1988),J. Gen. Microbiol. 134, 3141–3149.

    CAS  Google Scholar 

  6. Berger, R. G., Drawert, F., Kinzkofer, A., Kunz, C., and Radola, B. J. (1985),Plant Physiol. 77, 211–214.

    CAS  Google Scholar 

  7. Chibbar, R. N. and Van-Huystee, R. B. (1984),Plant Physiol. 75, 956–958.

    CAS  Google Scholar 

  8. Deits, T. M. and Shapiro, B. M. (1991),Peroxidases in Biology & Chemistry CRC1, pp 237–258.

    Google Scholar 

  9. Wever, R., Hamers, M. N., Weening, R. S., and Roos, D. (1980),Eur. J. Biochem. 108, 491–495.

    Article  CAS  Google Scholar 

  10. Deobald, L. A. and Crawford, D. L. (1987),Appl. Microbiol. Biotechnol. 26, 158–163.

    Article  CAS  Google Scholar 

  11. De Boer, E., Van Kooyk, Y., Tromp, M. G. M., Plat, H., and Wever, R. (1986),Biochim. Biophys. Acta 869, 48–53.

    Google Scholar 

  12. Krenn, B. E., Plat, H., and Wever, R. (1988),Biochim. Biophys. Acta 952, 252–260.

    Google Scholar 

  13. Wiesner, W., Van-Pee, K. H., and Lingens, F. (1986), FEBSlett. 209, 321–424.

    Article  CAS  Google Scholar 

  14. Yu, H. and Whittaker, J. W. (1989),Biochim. Biophys. Commun. 160, 87–92.

    Article  CAS  Google Scholar 

  15. Vazquez-Duhalt, R., Westlake, D. W. S., and Fedorak, P. M. (1995),Appl. Microbiol. Biotechnol 42, 675–681.

    Article  CAS  Google Scholar 

  16. Ball, A. S., Godden, B., Helvenstein, P., Penninekx, M. J., and McCarthy, A. J. (1990),Appl. Environ. Microbiol 56, 3017–3022.

    CAS  Google Scholar 

  17. Ball, A. S. and McCarthy, A. J. (1988),J. Gen. Microbiol. 134, 2139–2147.

    CAS  Google Scholar 

  18. McCarthy, A. J. and Williams, S. T. (1992),Gene 115, 189–192.

    Article  CAS  Google Scholar 

  19. McCarthy, A. J., Peace, W., and Broda P. (1985),App. Mrobiol. Technol. 21, 238–244.

    CAS  Google Scholar 

  20. Wilson, D. B. (1992),Crit. Rev. Biotechnol. 12, 45–63.

    Article  CAS  Google Scholar 

  21. Trigo, C. and Ball, A. S. (1994),Appl. Microbiol. Biotechnol. 41, 366–372.

    Article  CAS  Google Scholar 

  22. Ball, A. S. and Trigo, C. (1995),Biochem. Soc. Trans. 23, 272–276.

    CAS  Google Scholar 

  23. Rob, A., Ball, A. S., Tuncer, M., and Wilson, M. T. (1995),Biochem. Soc. Trans. 23, 507.

    Google Scholar 

  24. Hernandez, M., Rodriguez, J., Soliveri, J., Copa, J. L., Perez, M. I., and Arias, M. E. (1994),Appl. Environ. Microbiol. 60, 3909–3913.

    CAS  Google Scholar 

  25. Ramachandra, M., Crawford, D. L., and Pometto, A. L. (1987),Appl. Environ. Microbiol. 53, 2754–2760.

    CAS  Google Scholar 

  26. Crawford, D. L. (1978),Appl. Environ. Microbiol. 35, 1041–1045.

    CAS  Google Scholar 

  27. Bradford, M. M. (1976),Anal. Biochem. 72, 248–254.

    Article  CAS  Google Scholar 

  28. Archibald, F. S. (1992),Appl. Environ. Microbiol. 58, 3110–3116.

    CAS  Google Scholar 

  29. Fukumori, Y., Fujiwara, T., Okada-Takahashi, Y., Mukohata, Y., and Yamanaka T. (1985),J. Biochem. 98, 1055–1061.

    CAS  Google Scholar 

  30. Iqbal, M., Mercer, D. K., Miller, P. G. G., and McCarthy, A. J. (1994),Microbiology 140, 1457–1465.

    CAS  Google Scholar 

  31. Ramachandra, M., Crawford, D. L., and Hertel, G. (1988),Appl. Environ. Microbiol. 54, 3057–3063.

    CAS  Google Scholar 

  32. Burd, W., Yourkevich, C., Voskoboev, A. J., and Van-Pee, K. H. (1995),FEMS Microbiol. Lett. 129, 255–260.

    CAS  Google Scholar 

  33. Johnson, W. C. and Lindsey, A. J. (1939),Analyst 64, 958–993.

    Article  Google Scholar 

  34. Lodha, S. J., Korus, R. A., and Crawford, D. L. (1991),Appl. Biochem. Biotechnol. 28, 411–420.

    Article  Google Scholar 

  35. Donnelly, P. K. and Crawford, D. L. (1988),Appl. Environ. Microbiol. 54, 2237–2244.

    CAS  Google Scholar 

  36. Duran, N., Ferrer, I., and Rodriquez, J. (1987),Appl. Biochem. Biotechnol. 16, 157–167.

    CAS  Google Scholar 

  37. Ferrer, I., Esposito, E., and Duran, N. (1992),Enzym. Microb. Technol 14, 402–406.

    Article  CAS  Google Scholar 

  38. Klyachko, N. L. and Klibanov, A. M. (1992),Appl. Biochem. Biotechnol. 37, 53–68.

    CAS  Google Scholar 

  39. Tatsumi, K., Ichikawa, H., and Wada, S. (1994),Water Science and Tech 30, 79–86.

    CAS  Google Scholar 

  40. Klibanov, A. M. and Morris, E. D. (1981),Enzyme Microb. Technol. 3, 119–122.

    Article  CAS  Google Scholar 

  41. Klibanov, A. M., Tu, T. M., and Scott, K. P. (1983),Science 221, 259–261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rob, A., Hernandez, M., Ball, A.S. et al. Production and partial characterization of extracellular peroxidases produced bystreptomyces avermitilis UAH30. Appl Biochem Biotechnol 62, 159–174 (1997). https://doi.org/10.1007/BF02787992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787992

Index Entries

Navigation