Skip to main content
Log in

Stabilization ofEscherichia coli penicillin G acylase by polyethylene glycols against thermal inactivation

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of five polyethylene glycol (PEG) compounds of different molecular weight on the thermal stability of penicillin G acylase (PGA) obtained from a mutant ofEscherichia coli ATCC 11105 have been investigated. The molecular weights of PEG compounds were 400, 4000, 6000, 10,000, and 15,000. The thermal inactivation mechanisms of both native and PEG-containing PGA were considered to obey first order inactivation kinetics during prolonged heat treatments. Optimal concentrations of PEGs at molecular weights of 400,4000, 6000,10,000, and 15,000 were found to be 250,150,150,100, and 50 mM, respectively. The greatest enhancement of thermostability was observed with PEG 4000 and PEG 6000, as a nearly 20-fold increase above 50°C. PGA showed almost the same temperature activity profile and optimal temperature values both in the presence and absence of PEG. The addition of PEGs did not cause any change in the optimal temperature value of PGA, but the parametersV m ,K m , the activation energy, and thek cat values of enzyme were markedly decreased because of the mixed inhibition by PEG compounds. The type of inhibition was found to be hyperbolic uncompetitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shewale, J. G., Despande, B. S., Sudhakaran, V. K., and Amberkar, S. S. (1990),Process Biochem. 25, 97.

    CAS  Google Scholar 

  2. Erarslan, A., Terzi, L, Güray, A., and Bermek, E. (1991),J. Chem. Technol. Biotechnol. 51, 27.

    Article  CAS  Google Scholar 

  3. Erarslan, A. (1993),Process Biochem. 28, 311.

    Article  CAS  Google Scholar 

  4. Erarslan, A. and Güray, A. (1991),J. Chem. Technol. Biotechnol. 51, 181.

    Article  CAS  Google Scholar 

  5. Schmid, R. D. (1979), inAdvances in Biochemical Engineering, Ghose, T. K., Fiechter, A., and Blakebrough, N., eds., Springer Verlag, Berlin, vol. 12, pp. 41–127.

    Google Scholar 

  6. Klibanov, A. M. (1989),TIBS 14, 141.

    CAS  Google Scholar 

  7. Klibanov, A. M. (1983), inAdvances in Applied Microbiology, Laskin, A. L, ed., Academic, New York, vol. 29, pp. 1–28.

    Google Scholar 

  8. Larreta-Garde, V., Xu, Z. F., and Thomas, D. (1988),Enzyme Engineering, Blanch, H. W., and Klibanov, A. M., eds., Academic, New York, vol. 9, pp. 294–298.

    Google Scholar 

  9. Alvaro, G., Lafuente, R. F., Blanco, R. M., and Guisán, J. M. (1990),Appl. Biochem. Biotechnol. 26, 181.

    CAS  Google Scholar 

  10. Guisán, J. M. (1988),Enzyme Microb. Technol. 10, 375.

    Article  Google Scholar 

  11. Lafuente, R. F., Rosell, C. M., Alvaro, G., and Guisán, J. M. (1992),Enzyme Microb. Technol. 14, 489.

    Article  Google Scholar 

  12. Erarslan, A. and Koçer, H. (1992),Escherichia coli ATCC 11105.J. Chem. Technol. Biotechnol. 55, 79.

    Article  CAS  Google Scholar 

  13. Lafuente, R. F., Rosell, C. M., and Guisán, J. M. (1991)Enzyme Microb. Technol. 13, 898.

    Article  Google Scholar 

  14. Erarslan, A. (1995),Process Biochem. 30, 133.

    Article  CAS  Google Scholar 

  15. McDougall, B., Dunnill, P., and Lilly, M. D., (1982),Enzyme Microb. Technol. 4, 114.

    Article  CAS  Google Scholar 

  16. Andersson, E. and Hahn-Hagerdahl, B. (1982),Biochim. Biophys. Acta 912, 317.

    Google Scholar 

  17. Erarslan, A. and Güray, A.(1991),Do-ga-Tr. J. Biology,15, 167–174.

    CAS  Google Scholar 

  18. Batchelor, F. R., Chain, E. B., Hardy, T. L., Mansford, K. R. L., and Rolinson, G. N. (1961),Proc. Roy. Soc. B 154, 498.

    Article  CAS  Google Scholar 

  19. Shewale, G. J., Kumar, K. K., and Ambekar, G. R. (1987),Biotechnol. Techniques 1, 69.

    Article  CAS  Google Scholar 

  20. Spector, T. (1978),Anal. Biochem. 86, 142.

    Article  CAS  Google Scholar 

  21. Sedmak, J. J. and Grossberg, S. E. (1977),Anal. Biochem. 79, 544.

    Article  CAS  Google Scholar 

  22. Monsan, P. and Combes, D. (1984),Ann. NY Acad. Sci. USA 434, 48.

    Article  CAS  Google Scholar 

  23. Ye, W. N., Combes, D., and Monsan, P. (1988),Enzyme Microb. Technol. 10, 498.

    Article  CAS  Google Scholar 

  24. Asther, M. and Meunier, J. C. (1990),Enzyme Microb. Technol. 12, 902.

    Article  CAS  Google Scholar 

  25. Arakawa, T. and Timasheff, S. N. (1985),Biochemistry 24, 6756.

    Article  CAS  Google Scholar 

  26. Lee, L. L. Y. and Lee, J. C. (1987),Biochemistry 26, 7813.

    Article  CAS  Google Scholar 

  27. Mozhaev, V. V. and Martinek, K. (1984),Enzyme Microb. Technol. 6, 50.

    Article  CAS  Google Scholar 

  28. Dubey, A. K., Bisaria, V. S., Mukhopadhyay, S. N., and Ghose, T. K. (1989),Biotechnol. Bioeng. 33, 1311.

    Article  CAS  Google Scholar 

  29. Segel, I. H. (1975), inEnzyme Kinetics, Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme. Wiley, New York, pp. 178–192.

    Google Scholar 

  30. Alvaro, G., Lafuente, R. B., Blanco, R. M., and Guisán, J. M. (1991),Enzyme Microb. Technol. 13, 210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altan Erarslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazan, D., Erarslan, A. Stabilization ofEscherichia coli penicillin G acylase by polyethylene glycols against thermal inactivation. Appl Biochem Biotechnol 62, 1–13 (1997). https://doi.org/10.1007/BF02787979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787979

Index Entries

Navigation