Skip to main content
Log in

Phage display of enzymes and in vitro selection for catalytic activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite recent progress, our understanding of enzymes remains limited: the prediction of the changes that should be introduced to alter their properties or catalytic activities in an expected direction remains difficult. An alternative to rational design is selection of mutants endowed with the anticipated properties from a large collection of possible solutions generated by random mutagenesis. We describe here a new technique of in vitro selection of genes on the basis of the catalytic activity of the encoded enzymes.

The gene coding for the enzyme to be engineered is cloned into the genome of a filamentous phage, whereas the enzyme itself is displayed on its surface, creating a phage enzyme. A bifunctional organic label containing a suicide inhibitor of the enzyme and a ligand with high affinity for an immobilized receptor are constructed. On incubation of a mixture of phage enzymes, those phages showing an activity on the inhibitor under the conditions of the experiment are labeled. These phages can be recovered by affinity chromatography.

The design of the label and the factors controlling the selectivity of the selection are analyzed. The advantages of the technique and its scope in terms of the enzymes that can be engineered are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTT:

dithiothreitol

fd-bla(+):

fd phage displaying active β-lactamase

fd-bla(-):

fd phage displaying a β-lactamase inactivated by site-directed mutagenesis

g3p:

product of gene 3 of fd phage

PCR:

polymerase chain reaction

PEG:

olyethylene glycol

References

  1. Atkins, W. M. and Sligar, S. G. (1991),Curr. Opin. Struct. Biol. 1, 611–616.

    Article  CAS  Google Scholar 

  2. Wilson, Ch. and Agard, D. A. (1991),Curr. Opin. Struct. Biol. 1, 617–623.

    Article  CAS  Google Scholar 

  3. Zoller, M. J. (1991),Curr. Opin. Struct. Biol. 1, 605–610.

    Article  CAS  Google Scholar 

  4. Pollack, S. J., Hsiun, P., and Schultz, P. G. (1989),J. Am. Chem. Soc. 111, 5961, 5962.

    Article  CAS  Google Scholar 

  5. Hermes, J. D., Blacklow, S. C., and Knowles, J. R. (1990),Proc. Natl. Acad. Sci. USA 87, 696–700.

    Article  CAS  Google Scholar 

  6. Erwin, L. B., Vasquez, J. R., and Craik, C. S. (1990),Proc. Natl. Acad. Sci. USA 87, 6659–6663.

    Article  Google Scholar 

  7. Model, P., and Russel, M. (1988), inThe Bacteriophages II, Calendar, R. (ed.), Plenum, New York, pp. 375–454.

    Google Scholar 

  8. Rasched, I. and Oberer, E. (1986),Microbiol. Rev. 50, 401–427.

    CAS  Google Scholar 

  9. Smith, G. P. (1985),Science 228, 1315–1317.

    Article  CAS  Google Scholar 

  10. de la Cruz, V. F., Lal, A. A., and McCutchan, T. F. (1988),J. Biol. Chem. 263, 4318–4322.

    Google Scholar 

  11. Parmley, S. F. and Smith, G. P. (1988),Gene 73, 305–318.

    Article  CAS  Google Scholar 

  12. Scott, J. K. and Smith, G. P. (1990),Science 249, 386–390.

    Article  CAS  Google Scholar 

  13. Cwirla, S. E., Peters, E. A. Barrett, R. W., and Dower, W. J. (1990),Proc. Natl. Acad. Sci. USA 87, 6378–6382.

    Article  CAS  Google Scholar 

  14. Devlin, J. J., Panganiban, L. C., and Devlin, P. E. (1990),Science 249, 404–406.

    Article  CAS  Google Scholar 

  15. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990),Nature 348, 552–554.

    Article  CAS  Google Scholar 

  16. Barbas, C. F. III, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991),Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  CAS  Google Scholar 

  17. Clackson, T., Hoogenboom, H. R., Griffiths, A. R., and Winter, G. (1991),Nature 352, 624–628.

    Article  CAS  Google Scholar 

  18. Kang, A. S., Barbas, C. F., Janda, K. D., Benkovic, S. J., and Lerner, R. A. (1991),Proc. Natl. Acad. Sci. USA 88, 4363–4366.

    Article  CAS  Google Scholar 

  19. Bass, S., Greene, R., and Wells, J. A. (1990),Proteins: Struct. Funct. Genet. 8, 309–314.

    Article  CAS  Google Scholar 

  20. Lowman, H. B., Bass, S. H., Simpson, N., and Wells, J. A. (1991),Biochemistry 30, 10,832–10,838.

    Article  CAS  Google Scholar 

  21. Roberts, B. L., Markland, W., Ley, A. C., Kent, R. B., White, D. W., Guterman, S. K., and Ladner, R. C. (1992),Proc. Natl. Acad. Sci. USA 89, 2429–2433.

    Article  CAS  Google Scholar 

  22. Pannekoek, H., van Meijer, M., Schleef, R. R., Loskutoff, D. J., and Barbas, C. F. III (1993),Gene 128, 135–140.

    Article  CAS  Google Scholar 

  23. Swimmer, C., Lehar, S. M., McCafferty, J., Chiswell, D. J., Blattler, W. A., and Guild, B. C. (1992),Proc. Natl. Acad. Sci. USA 89, 3756–3760.

    Article  CAS  Google Scholar 

  24. Robertson, M. W. (1993),Prot. Eng. 6, 73.

    Google Scholar 

  25. McCafferty, J., Jackson, R. H., and Chiswell, D. J. (1991),Prot. Eng. 4, 955–961.

    Article  CAS  Google Scholar 

  26. Corey, D. R., Shiau, A. K., Yang, Q., Janowski, B. A., and Craik, C. S. (1993),Gene 128, 129–134.

    Article  CAS  Google Scholar 

  27. Ator, M. A. and Ortiz de Montellano, P. R. (1990), inThe Enzymes, 3rd ed., vol.19, Sigman, D. S. and Boyer, P. D. (eds.), Academic, pp. 213–282.

  28. Jelsch, C., Lenfant, F., Masson, J. M., and Samama, J. P. (1992),FEBS Lett 299, 135–142.

    Article  CAS  Google Scholar 

  29. Ghuysen, J.-M. (1991),Ann. Rev. Microbiol. 45, 37–67.

    Article  CAS  Google Scholar 

  30. Sigal, I. S., DeGrado, W. F., Thomas, B. J., and Petteway, S. R. Jr. (1984),J. Biol. Chem. 259, 5327–5332.

    CAS  Google Scholar 

  31. Dalbadie-McFarland, G., Neitzel, J. J., and Richards, J. H. (1986),Biochemistry 25, 332–338.

    Article  CAS  Google Scholar 

  32. Mazzella, L. J., Pazhanisamy, S., and Pratt, R. F. (1991),Biochem. J. 274, 855–859.

    CAS  Google Scholar 

  33. Jacob, F., Joris, B., and Frere, J.-M. (1991),Biochem. J. 277, 647–652.

    CAS  Google Scholar 

  34. Knowles, J. R. (1985),Acc. Chem. Res. 18, 97–104.

    Article  CAS  Google Scholar 

  35. Ambler, R. P., Coulson, A. F. W., Fr’ere, J.-M., Ghuysen, J.-M., Joris, B., Forsman, M., Levesque, R. C., Tibary, G., and Waley, S. G. (1991),Biochem. J. 276, 269,270.

    Google Scholar 

  36. Zacher, A. N. III, Stock, C. A., Golden, J. W. II, and Smith, G. P. (1980),Gene 9, 127–140.

    Article  CAS  Google Scholar 

  37. Sutcliffe, J. G. (1978),Proc. Natl. Acad. Sci. USA 75, 3737–3741.

    Article  CAS  Google Scholar 

  38. Nagai, K. and Thogersen, H. C. (1984),Nature 309, 810–812.

    Article  CAS  Google Scholar 

  39. Goldsmith, M. E. and Konigsberg, W. H. (1977),Biochemistry 16, 2686–2694.

    Article  CAS  Google Scholar 

  40. Wilchek, M. and Bayer, E. A. (1988),Anal. Biochem.171, 1–32.

    Article  CAS  Google Scholar 

  41. Clarke, A. J., Mezes, P. S., Vice, S. F., Dmitrienko, G. I., and Viswanatha, T. (1983),Biochim. Biophys. Acta 748, 389–397.

    CAS  Google Scholar 

  42. Dmitrienko, G. I., Copeland, C. R., Arnold, L., Savard, M. E., Clarke, A. J., and Viswanatha, T. (1985),Bioorg. Chem. 13, 34–46.

    Article  CAS  Google Scholar 

  43. Mezes, P. S. F., Clarke, A. J., Dmitrienko, G. I., and Viswanatha, T. (1982),FEBS Lett 143, 265–267.

    Article  CAS  Google Scholar 

  44. Schneider, C. H. and De Weck, A. L. (1965),Nature 208, 57–59.

    Article  CAS  Google Scholar 

  45. Wells, J. A., Powers, D. B., Bott, R. R., Graycar, T. P., and Estell, D. A. (1987),Proc. Natl. Acad. Sci. USA 84, 1219–1223.

    Article  CAS  Google Scholar 

  46. Cunningham, B. C. and Wells, J. A. (1987),Prot. Eng. 1, 319–325.

    Article  CAS  Google Scholar 

  47. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983),Nucl. Acids Res. 11, 7911–7925.

    Article  CAS  Google Scholar 

  48. Ikemura, H., Takagi, H., and Inouye, M. (1987),J. Biol. Chem. 262, 7859–7864.

    CAS  Google Scholar 

  49. Power, S. D., Adams, R. M., and Wells, J. A. (1986),Proc. Natl. Acad. Sci. USA 83, 3096–3100.

    Article  CAS  Google Scholar 

  50. Carter, P. and Wells, J. A. (1987),Science 237, 394–399.

    Article  CAS  Google Scholar 

  51. Ikemura, H. and Inouye, M. (1988),J. Biol. Chem. 263, 12,959–12,963.

    CAS  Google Scholar 

  52. Inouye, M. (1991),Enzyme 45, 314–321.

    CAS  Google Scholar 

  53. Egnell, P. and Flock, J.-I. (1991),Gene 97, 49–54.

    Article  CAS  Google Scholar 

  54. Egnell, P. and Flock, J.-I. (1992),Mol. Microbiol.6, 1115–1119.

    Article  CAS  Google Scholar 

  55. Schülein, R., Kreft, J., Gonski, S., and Goebel, W. (1991),Mol. Gen. Genet. 227, 137–143.

    Article  Google Scholar 

  56. Stahl, M. L. and Ferrari, E. (1984),J. Bacteriol.158, 411–418.

    CAS  Google Scholar 

  57. Gray, C. W., Brown, R. S., and Marvin, D. A. (1981),J. Mol. Biol. 146, 621–627.

    Article  CAS  Google Scholar 

  58. Amstrong, J., Perham, R. N., and Walker, J. E. (1981),FEBS Lett. 135, 167–172.

    Article  Google Scholar 

Discusston References

  1. Ollis, E. L., Cheah, E., Cyler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, L., Schrag, J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A. (1992),Protein Eng. 5, 197–211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soumillion, P., Jespers, L., Bouchet, M. et al. Phage display of enzymes and in vitro selection for catalytic activity. Appl Biochem Biotechnol 47, 175–190 (1994). https://doi.org/10.1007/BF02787933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787933

Index Entries

Navigation