Advertisement

Applied Biochemistry and Biotechnology

, Volume 54, Issue 1–3, pp 173–191 | Cite as

Genetic engineering to enhance the selectivity of protein separations

  • Charles E. Glatz
  • Clark F. Ford
Part III Emerging Technologies In Bioseparations

Abstract

The ability to recover and purify natural and recombinant proteins, and the costs of doing so remain a major task in introducing the potential products of biotechnology. The bases for separation range from specific binding onto tailored reagents to solubility and partitioning behavior governed by a mixed bag of size, charge, and hydrophobicity. In most cases, a combination of methods is used in sequence, and improvements in the selectivity at an early stage can enhance the effectiveness of subsequent (and usually more costly) steps. Genetic engineering provides a means of improving the selectivity within the context of existing separation methods.

By this strategy, improvements in selectivity are sought by bestowing a distinctive property on the protein of interest. The primary sequence of amino acids is altered, such that the protein can be selectively removed from other components of the multicomponent mixture in which such products are commonly found. In this article, the range of these “distinctive properties” and their pairing with various separation methods will be reviewed. Specific examples from our work, in which a distinctive charge is provided via a polypeptide “purification” fusion tail, will be discussed. Separation methods we have used with these fusion proteins are precipitation, two-phase aqueous extraction, reversed micellar extraction, and ion exchange using both resins and membranes.

Index Entries

Protein separation purification fusion precipitation ion exchange genetic engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ford, C. F., Suominen, I., and Glatz, C. E. (1991),Protein Expression and Purification 2, 95–107.CrossRefGoogle Scholar
  2. 2.
    Brewer, S. J., Haymore, B. L., Hopp, T. P., and Sassenfeld, H. M. (1991), inPurification and Analysis of Recombinant Proteins, Ramnath, S. and Sharma, S. K., eds., Marcel Dekker, New York, pp. 239–266.Google Scholar
  3. 3.
    Hammarberg, B., Nygren, P.-A., Holmgren, E., Elmblad, A., Tally, M., Hellman, U., Moks, T., and Uhlén, M. (1989),Proc. Natl. Acad. Sci. USA 86, 4367–4371.CrossRefGoogle Scholar
  4. 4.
    Hopp, T. P., Prickett, K. S., Price, V. L., Libby, R. T., March, C. J., Cerretti, D. P., Urdal, D. L., and Conlon, P. J. (1988),Bio/Technol. 6, 1204–1210.CrossRefGoogle Scholar
  5. 5.
    Sassenfeld, H. M. and Brewer, S. J. (1984),Bio/Technol. 2, 76–81.CrossRefGoogle Scholar
  6. 6.
    Todd, R. J. (1993), Ph.D. thesis, California Institute of Technology, Pasadena, CA.Google Scholar
  7. 7.
    Moks, T., Abrahmsén, L., Holmgren, E., Bilich, M., Olsson, A., Uhlén, M., Pohl, G., Sterky, G., Hultberg, H., Josephson, S., Holmgren, A., Jörnvall, H., and Nilsson, B. (1987),Biochemistry 26, 5239–5244.CrossRefGoogle Scholar
  8. 8.
    Itakura, K., Hirose, T., Crea, R., and Riggs, A. D. (1977),Science 198, 1056–1063.CrossRefGoogle Scholar
  9. 9.
    Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A. D. (1979),Proc. Natl. Acad. Sci. USA 76, 106–110.CrossRefGoogle Scholar
  10. 10.
    Shine, J., Fettes, L., Lan, N. C. Y., Roberts, J. L., and Baxter, J. D. (1980),Nature 285, 456–461.CrossRefGoogle Scholar
  11. 11.
    Stanley, K. K. and Luzio, J. P. (1984),EMBO J. 3, 1429–1434.Google Scholar
  12. 12.
    Skerra, A., Pfitzinger, L., and Plückthun, A. (1991),Bio/Technol. 9, 273–278.CrossRefGoogle Scholar
  13. 13.
    Niederauer, M. Q., Suominen, L., Rougvie, M. A., Ford, C. F., and Glatz, C. E. (1994),Biotechnol. Prog. 10, 237–245.CrossRefGoogle Scholar
  14. 14.
    Ullmann, A. (1984),Gene 29, 27–31.CrossRefGoogle Scholar
  15. 15.
    Heng, M. H. and Glatz, C. E. (1994),Biotechnol. Bioeng. 44, 745–752.CrossRefGoogle Scholar
  16. 16.
    Niederauer, M. Q. and Glatz, C. E. (1992),Adv. Biochem. Eng./Biotechnol. 47, 159–188.Google Scholar
  17. 17.
    Sternberg, M. and Hershberger, D. (1974),Biochem. Biophys. Acta 342, 195–206.Google Scholar
  18. 18.
    Clark, K. M. and Glatz, C. E. (1987),Biotechnol. Prog. 4, 241–247.CrossRefGoogle Scholar
  19. 19.
    Jacobson, R. H., Zhang, X.-J., DuBose, R. F., and Matthews, B. W. (1994),Nature 369, 761–766.CrossRefGoogle Scholar
  20. 20.
    Zhao, J., Ford, C. F., Glatz, C. E., Rougvie, M. A., and Gendel, S. M. (1990),J. Biotechnol. 14, 273–284.CrossRefGoogle Scholar
  21. 21.
    Suominen, L., Ford, C., Stachon, D., Heimo, H., Niederauer, M., Nurmela, H., and Glatz, C. (1993),Enzyme Microb. Technol. 15, 593–600.CrossRefGoogle Scholar
  22. 22.
    Parker, D. E., Glatz, C.E., Ford, C.F., Gendel, S. M., Suominen, I., and Rougvie, M. A. (1990),Biotechnol. Bioeng. 36, 467–475.CrossRefGoogle Scholar
  23. 23.
    Heng, M. H. and Glatz, C. E. (1993),Biotechnol. Bioeng. 42, 333–338.CrossRefGoogle Scholar
  24. 24.
    Thiem, E. and Heng, M. H. (1994),J. Iowa Acad. Sci. 101, 66–69.Google Scholar
  25. 25.
    Luther, J. R. and Glatz, C. E. (1994),Biotechnol. Bioeng. 44, 147–153.CrossRefGoogle Scholar
  26. 26.
    Forney, C. E. and Glatz, C. E. (1994),Biotechnol. Prog. 10, 499–503.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Charles E. Glatz
    • 1
  • Clark F. Ford
    • 2
  1. 1.Department of Chemical EngineeringIowa State UniversityAmes
  2. 2.Department of Food Science and Human NutritionIowa State UniversityAmes

Personalised recommendations