Applied Biochemistry and Biotechnology

, Volume 59, Issue 1, pp 93–104 | Cite as

The effect of alternative carbohydrates on the growth and antibody production of a murine hybridoma

  • D. Petch
  • M. Butler
Original Articles


A murine hybridoma (CC9C10) was adapted to grow in media containing alternative carbohydrates to glucose. Cell yields relative to the glucose-based culture decreased in order of the following supplements: glucose = maltose > galactose > fructose = sorbitol = xylitol, although significant yields (> 50% of glucose control) were observed in all cultures. In the absence of glucose, glutamine consumption rates were enhanced significantly. Antibody production was directly related to the viable cell concentration in each culture and was independent of the phase of culture. A high specific antibody productivity (qMab) was observed in the cultures containing the polyols, sorbitol, or xylitol, even though the cell yields and growth rates were lower than the glucose-based control. The measured qMab in the xylitol culture was 5.6x that of the glucose culture and the volumetric yield of MAb was 29% higher.

Index Entries

Hybridoma MAb carbohydrates sorbitol xylitol lactate glutamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eagle, H., Barban, S., Levy, M., and Schulze, H. O. (1958),J. Biol. Chem. 233, 551–558.Google Scholar
  2. 2.
    Burns, R. L., Rosenberger, P. G., and Kleke, R. J. (1976),J. Cell Physiol. 88, 307–316.CrossRefGoogle Scholar
  3. 3.
    Cristafalo, V. J. and Kritchevsky, D. (1965),Proc. Soc. Exp. Biol. Med. 118, 1109–1112.Google Scholar
  4. 4.
    Imamura, T., Crespi, C. L., Thilly, W. G., and Brunengraber, H. (1982),Anal. Biochem. 124, 353–358.CrossRefGoogle Scholar
  5. 5.
    Demetrakopoulos, G. E. and Amos, H. (1976),Biochem. Biophys. Res. Commun. 72, 1169–1178.CrossRefGoogle Scholar
  6. 6.
    Turner, J. L. and Bierman, E. L. (1978),Diabetes 27, 583–588.CrossRefGoogle Scholar
  7. 7.
    Vincent, M. F., van den Berghe, G., and Hers, H. G. (1989),FASEB J. 3, 1862–1867.Google Scholar
  8. 8.
    Schroer, J. A., Bender, T., Feldman, R. J., and Kim K. J. (1983),Eur. J. Immunol. 13, 693–700.CrossRefGoogle Scholar
  9. 9.
    Bergmeyer, H. U., Gruber, W., and Gutmann, I. (1974), inMethods of Enzymatic Analysis, Bergmeyer, H. U., ed., Acedemic, New York, p. 1323.Google Scholar
  10. 10.
    Bassler, K-H. (1974), inMethods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, p. 1381.Google Scholar
  11. 11.
    Kurz, G. and Wallenfels, K. (1974), inMethods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, p. 1279.Google Scholar
  12. 12.
    Gerlach, U. (1983), inMethods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, p. 112.Google Scholar
  13. 13.
    Lund, P. (1985), inMethods of Enzymatic Analysis, Bergmeyer, H. U., ed., Academic, New York, p. 357.Google Scholar
  14. 14.
    Long, W. J., Palombo, A., Schofield, T. L., and Emini, E. A. (1988),Hybridoma 7, 69–77.CrossRefGoogle Scholar
  15. 15.
    Petch, D. and Butler, M. (1994),J. Cell Physiol. 161, 71–76.CrossRefGoogle Scholar
  16. 16.
    Zielke, H. R., Ozand, P. T., Tildon, G. T., Sevdalian, D. A., and Cornblath, M. (1976),Proc. Natl. Acad. Sci. 73, 4110–4114.CrossRefGoogle Scholar
  17. 17.
    Wang, Y.-M. and Eys, J. van (1981),Ann. Rev. Nutr. 1, 437–475.CrossRefGoogle Scholar
  18. 18.
    Renard, J. M., Spagnoli, R., Mazier, C., Salles, M. F., and Mandine, E. (1988),Biotechnology Lett. 10, 91–96.CrossRefGoogle Scholar
  19. 19.
    Oh, S. K. W., Vig, P., Chua, F., Teo, W. K., and Yap, M. G. S. (1993),Biotech. Bioeng. 42, 601–610.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • D. Petch
    • 1
  • M. Butler
    • 1
  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations