Skip to main content
Log in

Antibody-antigen binding kinetics a model for multivalency antibodies for large antigen systems

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work presents a theoretical analysis of the influence of multivalency of antigen on external mass transfer-limited binding kinetics to divalent antibody for biosensor applications to polycyclic-aromatic systems. Both cases are considered wherein the antigen is in solution and the antibody is either covalently or noncovalently attached to a cylindrical fiber-optic biosensor, and the antibody is in solution and the antigen is attached to the surface. Both single-step and dual-step binding processes are considered. The rate of attachment of antigen to antibody (or vice versa) is linear for the valencies (or reaction orders) analyzed in the time frame (100 min) considered. The rate of attainment of saturation levels of antigen or antibody in solution close to the surface is very rapid (within 20 min). An increase in the valency of the antigen in solution has the effect of decreasing the order of reaction (for valency, Ν ≥ 1). An increase in the number of steps increases the order of reaction, as expected. An increase in the valency of the antigen in solution decreases the saturation level of the antigen close to the surface and the rate of antigen attachment to the antibody on the surface for all Damkohler numbers. A decrease in the diffusional limitations decreases the effect of valency (or reaction order) on saturation levels of cs/c0. Nondimensional plots presented in the analysis help extend the analysis to different antigen-antibody systems. An increase in the valency of the antibody in solution has the effect of increasing the order of reaction (for Ν < 2). The effects in this case are reverse to those described earlier. For valency greater than2, the reaction order is dependent on the antigen valency, whether it is in solution or immobilized on the surface. The general analysis presented here should be applicable to most surface reactions that involve ligand-receptor binding wherein multiple-binding sites are involved on either the receptor or the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vo-Dinh, T. and Niessner R. Eds. (1995),Environmental Monitoring and Hazardous Waste Site Remediations. SPIE Publishers, Bellingham, Washington.

    Google Scholar 

  2. Vo-Dinh, T., Tromberg, B. J., Griffin, G,D., Ambrose, K. R., Sepaniak, M. J., and Gradenhire, E. M. (1987),Appl. Spectrosc. 41, 735.

    Article  CAS  Google Scholar 

  3. Vo-Dinh, T., Nolan, T., Cheng, Y. F., Sepaniak, M. J., and Alarie, J. P. (1990),Appl. Spectrosc. 44, 128.

    Article  Google Scholar 

  4. Vo-Dinh, T., Alarie, J. P., Johnson, R. W., Sepaniak, M. J., and Santella, R. M. (1991),Clin. Chem. 37, 532.

    CAS  Google Scholar 

  5. Vo-Dinh, T., Sepaniak, M. J., Griffin, G. D., and Alarie, J. P. (1993),Immunomethods 3, 85–92.

    Article  CAS  Google Scholar 

  6. Tromberg, B. J., Sepaniak, M. J., Alarie, J. P., Vo-Dinh, T., and Santella, R. M. (1988),Anal. Chem. 60, 1901.

    Article  CAS  Google Scholar 

  7. Alarie, J. P., Sepaniak, M. J., and Vo-Dinh, T. (1990),Anal. Chim. Ada 229, 169–176.

    Article  CAS  Google Scholar 

  8. Giaver, I. (1976),J. Immunology,116, 766–771.

    Google Scholar 

  9. Stenberg, M., Stiblert, L., and Nygren, H. A. (1986),J. Theor. Biol. 120, 129–136.

    Article  CAS  Google Scholar 

  10. Nygren, H. and Stenberg, M. (1985),J. Colloid Interf. Sci. 107, 560–566.

    Article  CAS  Google Scholar 

  11. Stenberg, M. and Nygren, H. A. (1982)Anal. Biochem. 127, 183–192.

    Article  CAS  Google Scholar 

  12. Place J. F., Sutherland, R. M., and Dahne, C. (1985),Biosensors 1, 321–353.

    Article  CAS  Google Scholar 

  13. Sadana, A. and Sii, D. (1992a),J. Colloid Interf. Sci. 151, 166–177.

    Article  CAS  Google Scholar 

  14. Sadana, A. and Sii, D. (1992b),Biosens. & Bioelectron. 7, 559–568.

    Article  CAS  Google Scholar 

  15. Sadana, A. and Madagula, A. (1993),Biotechnol. Progr. 9, 259–266.

    Article  CAS  Google Scholar 

  16. Sadana, A. and Madagula, A. (1994),Biosens. Bioelectron. 9, 45–55.

    Article  CAS  Google Scholar 

  17. Sadana, A. and Beelaram, A. (1994),Biotechnol. Prog. 10, 291–298.

    Article  CAS  Google Scholar 

  18. Sadana, A. and Beelaram, A. (1995),Biosens. Bioelectron. 10, 310–316.

    Article  Google Scholar 

  19. Sadana, A., Alarie, J. P., and Vo-Dinh, T. (1995),Talanta 42, 1567.

    Article  CAS  Google Scholar 

  20. Sadana, A. and Chen, Z. (1996),Biophys. Chem. 57, 177–187.

    Article  Google Scholar 

  21. Patankar, S. V. (1980),Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.

    Google Scholar 

  22. Kopelman, R. (1988),Science,241, 1620–1626.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadana, A., Vo-Dinh, T. Antibody-antigen binding kinetics a model for multivalency antibodies for large antigen systems. Appl Biochem Biotechnol 67, 1–22 (1997). https://doi.org/10.1007/BF02787837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787837

Index Entries

Navigation