Skip to main content
Log in

Small polynomials with integer coefficients

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We study the problem of minimizing the supremum norm, on a segment of the real line or on a compact set in the plane, by polynomials with integer coefficients. The extremal polynomials are naturally called integer Chebyshev polynomials. Their factors, zero distribution and asymptotics are the main subjects of this paper. In particular, we show that the integer Chebyshev polynomials for any infinite subset of the real line must have infinitely many distinct factors, which answers a question of Borwein and Erdélyi. Furthermore, it is proved that the accumulation set for their zeros must be of positive capacity in this case. We also find the first nontrivial examples of explicit integer Chebyshev constants for certain classes of lemniscates.

Since it is rarely possible to obtain an exact value of the integer Chebyshev constant, good estimates are of special importance. Introducing the methods of weighted potential theory, we generalize and improve the Hilbert-Fekete upper bound for the integer Chebyshev constant. These methods also give bounds for the multiplicities of factors of integer Chebyshev polynomials, and lower bounds for the integer Chebyshev constant. Moreover, all the bounds mentioned can be found numerically by using various extremal point techniques, such as the weighted Leja points algorithm. Applying our results in the classical case of the segment [0, 1], we improve the known bounds for the integer Chebyshev constant and the multiplicities of factors of the integer Chebyshev polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Amoroso,Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier (Grenoble)40 (1990), 885–911.

    MATH  MathSciNet  Google Scholar 

  2. F. Amoroso,f-transfinite diameter and number theoretic applications, Ann. Inst. Fourier (Grenoble)43 (1993), 1179–1198.

    MATH  MathSciNet  Google Scholar 

  3. E. Aparicio Bernardo,On the asymptotic structure of the polynomials of minimal diophantic deviation from zero, J. Approx. Theory55 (1988), 270–278.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Barnsley, D. Bessis and P. Moussa,The Diophantine moment problem and the analytic structure in the activity of the ferromagnetic Ising model, J. Math. Phys.20 (1979), 535–546.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Borwein,Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  6. P. Borwein and T. Erdélyi,Polynomials and Polynomial Inequalities, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  7. P. Borwein and T. Erdélyi,The integer Chebyshev problem, Math. Comp.65 (1996), 661–681.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. B. Borwein, C. G. Pinner and I. E. Pritsker,Monic integer Chebyshev problem, Math. Comp.72 (2003), 1901–1916.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. W. S. Cassels,An Introduction to the Geometry of Numbers, Springer-Verlag, Heidelberg, 1997.

    MATH  Google Scholar 

  10. P. L. Chebyshev,Collected Works, Vol. 1, Akad. Nauk SSSR, Moscow, 1944. (Russian)

    Google Scholar 

  11. G. V. Chudnovsky,Number theoretic applications of polynomials with rational coefficients defined by extremality conditions, inArithmetic and Geometry, Vol. I (M. Artin and J. Tate, eds.), Birkhäuser, Boston, 1983, pp. 61–105.

    Google Scholar 

  12. M. Fekete,Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.17 (1923), 228–249.

    Article  MathSciNet  Google Scholar 

  13. M. Fekete and G. Szegö,On algebraic equations with integral coefficients whose roots belong to a given point set, Math. Z.63 (1955) 158–172.

    Article  MATH  MathSciNet  Google Scholar 

  14. Le Baron O. Ferguson,Approximation by Polynomials with Integral Coefficients, Amer. Math. Soc., Providence, R.I., 1980.

    MATH  Google Scholar 

  15. V. Flammang,Sur la longueur des entiers algébriques totalement positifs, J. Number Theory54 (1995), 60–72.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Flammang,Sur le diamètre transfini entier d’un intervalle à extrémités rationnelles, Ann. Inst. Fourier (Grenoble)45 (1995), 779–793.

    MATH  MathSciNet  Google Scholar 

  17. V. Flammang, G. Rhin and C. J. Smyth,The integer transfinite diameter of intervals and totally real algebraic integers, J. Théor. Nombres Bordeaux9 (1997), 137–168.

    MATH  MathSciNet  Google Scholar 

  18. G. M. Goluzin,Geometric Theory of Functions of a Complex Variable, Vol. 26 of Translations of Mathematical Monographs, Amer. Math. Soc., Providence, R.I., 1969.

    Google Scholar 

  19. D. S. Gorshkov,On the distance from zero on the interval [0, 1] of polynomials with integral coefficients, inProc. of the Third All Union Mathematical Congress (Moscow, 1956), Vol. 4, Akad. Nauk SSSR, Moscow, 1959, pp. 5–7. (Russian)

    Google Scholar 

  20. L. Habsieger and B. Salvy,On integer Chebyshev polynomials, Math. Comp.66 (1997) 763–770.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Hilbert,Ein Beitrag zur Theorie des Legendreschen Polynoms, Acta Math.18 (1894), 155–159.

    Article  MathSciNet  Google Scholar 

  22. B. S. Kashin,Algebraic polynomials with integer coefficients deviating little from zero on an interval, Math. Notes50 (1991), 921–927.

    MATH  MathSciNet  Google Scholar 

  23. L. Kronecker,Zwei Sätze über Gleichungen mit ganzzahligen Koeffizienten, J. Reine Angew. Math.53 (1857), 173–175.

    MATH  Google Scholar 

  24. H. L. Montgomery,Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, GBMS, Vol. 84, Amer. Math. Soc., Providence, R. I., 1994.

    MATH  Google Scholar 

  25. M. Nair,A new method in elementary prime number theory, J. London Math. Soc. (2)25 (1982), 385–391.

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Pisot,Über ganzwertige ganze Funktionen, Jahresber. Deutsch. Math.-Verein.52 (1942), 95–102.

    MathSciNet  Google Scholar 

  27. C. Pisot,Sur les fonctions arithmétiques analytiques à croissance exponentielle, C. R. Acad. Sci. Paris,222 (1946), 988–990.

    MATH  MathSciNet  Google Scholar 

  28. C. Pisot,Sur les fonctions analytiques arithmétiques et presque arithmétiques, C. R. Acad. Sci. Paris222 (1946), 1027–1028.

    MATH  MathSciNet  Google Scholar 

  29. G. Pólya,Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo40 (1915), 1–16.

    Article  Google Scholar 

  30. G. Pólya,Sur les séries entières à coefficients entiers, Proc. London Math. Soc.21 (1922), 22–38.

    Article  Google Scholar 

  31. G. Pólya,Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe, Math. Ann.99 (1928), 687–706.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. E. Pritsker,Chebyshev polynomials with integer coefficients, inAnalytic and Geometric Inequalities and Applications (Th. M. Rassias and H. M. Srivastava, eds.), Kluwer Acad. Publ., Dordrecht, 1999, pp. 335–348.

    Google Scholar 

  33. I. E. Pritsker,The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. (to appear); Available electronically at http://www.math.okstate.edu/~igor/gsm.pdf

  34. T. Ransford,Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  35. T. J. Rivlin,Chebyshev Polynomials, John Wiley & Sons, New York, 1990.

    MATH  Google Scholar 

  36. R. M. Robinson,Intervals containing infinitely many sets of conjugate algebraic integers, inStudies in Mathematical Analysis and Related Topics: Essays in Honor of George Pólya (H. Chernoff, M. M. Schiffer, H. Solomon and G. Szegö, eds.), Stanford, 1962, pp. 305–315.

  37. R. M. Robinson,Conjugate algebraic integers in real point sets, Math. Z.84 (1964), 415–427.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. M. Robinson,An extension of Pólya’s theorem on power series with integer coefficients, Trans. Amer. Math. Soc.130 (1968), 532–543.

    Article  MATH  MathSciNet  Google Scholar 

  39. R. M. Robinson,Conjugate algebraic integers on a circle, Math. Z.110 (1969), 41–51.

    Article  MATH  MathSciNet  Google Scholar 

  40. R. M. Robinson,Integer valued entire functions, Trans. Amer. Math. Soc.153 (1971), 451–468.

    Article  MATH  MathSciNet  Google Scholar 

  41. E. B. Saff and V. Totik,Logarithmic Potentials with External Fields, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  42. I. Schur,Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.1 (1918), 377–402.

    Article  MathSciNet  Google Scholar 

  43. C. L. Siegel,The trace of totally positive and real algebraic integers, Ann. of Math. (2)46 (1945), 302–312.

    Article  MathSciNet  Google Scholar 

  44. C.J. Smyth,Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble)33 (1984), 1–28.

    MathSciNet  Google Scholar 

  45. G. Szegö,Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z.21 (1924), 203–208.

    Article  MathSciNet  Google Scholar 

  46. R. M. Trigub,Approximation of functions with Diophantine conditions by polynomials with integral coefficients, inMetric Questions of the Theory of Functions and Mappings, No. 2, Naukova Dumka, Kiev, 1971, pp. 267–333. (Russian)

    Google Scholar 

  47. M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the National Security Agency under Grant No. MDA904-03-1-0081.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pritsker, I.E. Small polynomials with integer coefficients. J. Anal. Math. 96, 151–190 (2005). https://doi.org/10.1007/BF02787827

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787827

Keywords

Navigation