Advertisement

Journal d’Analyse Mathématique

, Volume 96, Issue 1, pp 37–55 | Cite as

Elliptic, hyperbolic, and condenser capacity; geometric estimates for elliptic capacity

  • Dimitrios Betsakos
Article

Abstract

The elliptic capacity of a compact setE in the plane is defined by R. Kühnau by least energy considerations analogous to the definition of logarithmic capacity but using the elliptic distance in place of the euclidean distance. We prove an identity connecting elliptic capacity, extremal length, and the capacity of the condenser with platesE andE *, whereE * is antipodal toE in the Riemann sphere. An analogous identity for hyperbolic capacity, conjectured by P. Duren and J. Pfaltzgraff, is also established. We show that elliptic capacity is always smaller than hyperbolic capacity, thus answering a question of P. Duren and R. Kühnau. We prove some geometric estimates for elliptic capacity. These estimates involve geometric transformations such as polarization, circular symmetrization, projection, and shoving.

Keywords

Jordan Curve Harmonic Measure Equilibrium Measure Riemann Sphere Geometric Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. D. Anderson, M. K. Vamanamurthy,The Newtonian capacity of a space condenser, Indiana Univ. Math. J.34 (1985), 753–776.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen,Conformal Invariants, Inequalities, and Quasiconformal Maps, Wiley, New York, 1997.MATHGoogle Scholar
  3. [3]
    T. Bagby,The modulus of a plane condenser, J. Math. Mech.17 (1967), 315–329.MATHMathSciNetGoogle Scholar
  4. [4]
    D. Betsakos,On the equilibrium measure and the capacity of certain condensers, Illinois J. Math.44 (2000), 681–689.MATHMathSciNetGoogle Scholar
  5. [5]
    M. Brelot,Étude et extensions du principe de Dirichlet, Ann. Inst. Fourier5 (1955), 371–419.MathSciNetGoogle Scholar
  6. [6]
    V. N. Dubinin,Symmetrization in the geometric theory of functions of a complex variable (Russian), Uspekhi Mat. Nauk49 (1994), 3–76; translation in Russian Math. Surveys49 (1994), 1–79.MathSciNetGoogle Scholar
  7. [7]
    P. Duren and R. Kühnau,Elliptic capacity and its distortion under conformal mapping, J. Analyse Math.89 (2003), 317–335.MATHCrossRefGoogle Scholar
  8. [8]
    P. Duren and J. Pfaltzgraff,Hyperbolic capacity and its distortion under conformal mapping, J. Analyse Math.78 (1999), 205–218.MATHMathSciNetGoogle Scholar
  9. [9]
    O. D. Kellogg,Foundations of Potential Theory, Dover Publications, New York, 1953.MATHGoogle Scholar
  10. [10]
    R. Kühnau,Transfiniter Durchmesser, Kapazität und Tschebyschewsche Konstante in der euklidischen, hyperbolischen und elliptischen Geometrie, J. Reine Angew. Math.234 (1969), 216–220.MATHMathSciNetGoogle Scholar
  11. [11]
    N. S. Landkof,Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.MATHGoogle Scholar
  12. [12]
    F. Leja,Points extremaux des ensembles et leur application dans la théorie des fonctions, Ann. Acad. Sci. Fenn. Ser. A I250/20 (1958), 1–6.Google Scholar
  13. [13]
    R. Nevanlinna,Analytic Functions, Springer, New York, 1970, (first edition in German, 1936).MATHGoogle Scholar
  14. [14]
    M. Ohtsuka,Dirichlet Problem, Extremal Length and Prime Ends, Van Nostrand Reinhold, New York, 1970.MATHGoogle Scholar
  15. [15]
    M. Tsuji,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.MATHGoogle Scholar
  16. [16]
    V. Wolontis,Properties of conformal invariants, Amer. J. Math.74 (1952), 587–606.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2005

Authors and Affiliations

  • Dimitrios Betsakos
    • 1
  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations