Journal d’Analyse Mathématique

, Volume 67, Issue 1, pp 219–230

# L2 formulas for entire functions of exponential type

• Clément Frappier
Article

## Abstract

We express the integral of |f(x)|2,−∞<x<∞, as a summation involving different kind of nodes. Heref is an entire function of exponential type satisfying a certain growth condition. The method of proof uses interpolation formulas and orthogonality properties for some classes of entire functions of exponential type.

## Keywords

Entire Function Quadrature Formula Exponential Type Orthogonality Property Interpolation Formula
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
R. P. Boas,Entire Functions, Academic Press, New York, 1954.
2. [2]
G. Csordas and R. S. Varga,Fourier transforms and the Hermite-Biehler theorem, Proc. Amer. Math. Soc.107 (1989), 645–652.
3. [3]
C. Frappier,Representation formulas for integrable and entire functions of exponential type II, Can. J. Math.43 (1991), 34–47.
4. [4]
C. Frappier and P. Olivier,A quadrature formula involving zeros of Bessel functions, Math. Comp.60 (1993), 303–316.
5. [5]
G. H. Hardy,Notes on special systems of orthogonal functions IV: the orthogonal functions of Whittaker's cardinal series, Proc. Cambridge Philos. Soc.37 (1941), 331–348.
6. [6]
R. Kress,On the general Hermite cardinal interpolation, Math. Comp.26 (1972), 925–933.
7. [7]
J. McNamee, F. Stenger and E. L. Whitney,Whittaker's cardinal function in retrospect, Math. Comp.25 (1971), 141–154.
8. [8]
P. Olivier and Q. I. Rahman,Sur une formule de quadrature pour des fonctions entières, RAIRO Modél. Math. Anal. Numér.20 (1986), 517–537.
9. [9]
B. Rainer,Interpolation formulas for entire functions of exponential type and some applications, J. Math. Anal. Appl.135 (1988), 165–177.
10. [10]
G. N. Watson,A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge Univ. Press, Cambridge, 1952.Google Scholar
11. [11]
A. I. Zayed,On Kramer's sampling theorem associated with general Sturm-Liouville problems and Lagrange interpolation, SIAM J. Appl. Math.51 (1991), 575–604.