Journal d’Analyse Mathématique

, Volume 67, Issue 1, pp 219–230 | Cite as

L 2 formulas for entire functions of exponential type

  • Clément Frappier


We express the integral of |f(x)|2,−∞<x<∞, as a summation involving different kind of nodes. Heref is an entire function of exponential type satisfying a certain growth condition. The method of proof uses interpolation formulas and orthogonality properties for some classes of entire functions of exponential type.


Entire Function Quadrature Formula Exponential Type Orthogonality Property Interpolation Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Boas,Entire Functions, Academic Press, New York, 1954.MATHGoogle Scholar
  2. [2]
    G. Csordas and R. S. Varga,Fourier transforms and the Hermite-Biehler theorem, Proc. Amer. Math. Soc.107 (1989), 645–652.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    C. Frappier,Representation formulas for integrable and entire functions of exponential type II, Can. J. Math.43 (1991), 34–47.MATHMathSciNetGoogle Scholar
  4. [4]
    C. Frappier and P. Olivier,A quadrature formula involving zeros of Bessel functions, Math. Comp.60 (1993), 303–316.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. H. Hardy,Notes on special systems of orthogonal functions IV: the orthogonal functions of Whittaker's cardinal series, Proc. Cambridge Philos. Soc.37 (1941), 331–348.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Kress,On the general Hermite cardinal interpolation, Math. Comp.26 (1972), 925–933.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. McNamee, F. Stenger and E. L. Whitney,Whittaker's cardinal function in retrospect, Math. Comp.25 (1971), 141–154.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    P. Olivier and Q. I. Rahman,Sur une formule de quadrature pour des fonctions entières, RAIRO Modél. Math. Anal. Numér.20 (1986), 517–537.MATHMathSciNetGoogle Scholar
  9. [9]
    B. Rainer,Interpolation formulas for entire functions of exponential type and some applications, J. Math. Anal. Appl.135 (1988), 165–177.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. N. Watson,A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge Univ. Press, Cambridge, 1952.Google Scholar
  11. [11]
    A. I. Zayed,On Kramer's sampling theorem associated with general Sturm-Liouville problems and Lagrange interpolation, SIAM J. Appl. Math.51 (1991), 575–604.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1995

Authors and Affiliations

  • Clément Frappier
    • 1
  1. 1.Départment de mathématiques appliquées école Polytechnique de MontréalCampus de l'Université de MontréalMontréalCanada

Personalised recommendations