Advertisement

Journal d’Analyse Mathématique

, Volume 4, Issue 1, pp 246–291 | Cite as

Some theorems on discontinuous plane fluid motions

  • Robert Finn
Article

Keywords

Free Boundary Separation Point Free Boundary Problem Total Curvature Symmetric Convex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bergman, S., Mehrdeutige Lösungen bei Potential-Strömung,Zeit. Ang. Math. u. Mech., vol. 12 (1932) p. 95.CrossRefGoogle Scholar
  2. [2]
    Bergman, S., Methods for the Determination of Subsonic Flows around Profiles,Proc. First U.S. Nat. Cong. Appl. Mech., p. 705.Google Scholar
  3. [3]
    Beurling, A., An Extension of the Riemann Mapping Theorem,Acta Math., vol. 90, (1953), p. 117.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Borda, Mémoire sur l'écoulement des fluides par les orifices des vases,Mémoires Acad. Sci., Paris, (1769) p. 579.Google Scholar
  5. [5]
    Cisotti, U., Idromeccanica Piana, Milano (1921).Google Scholar
  6. [6]
    Courant, R., Dirichlet's Principle, Interscience, New York (1950).MATHGoogle Scholar
  7. [7]
    Friedrichs, K., Ueber ein Minimumproblem mit freiem Rande,Math. Ann., vol. 109, (1933) p. 60.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Garabedian, P. R., Lewy, H., and Schiffer M., Axially Symmetric Cavitational Flow,Annals of Math., vol. 56 (1952) p. 560.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Garabedian, P. R., and Spencer, D. C., Extremal Methods in Cavitational Flow,J. Rat. Mech. and Anal., vol. 1 (1952), p. 359.MathSciNetGoogle Scholar
  10. [10]
    Gilbarg, D., Uniqueness of Axially Symmetric Flows with free Boundaries,J. Rat. Mech. and Anal., vol. 1 (1952), p. 309.MathSciNetGoogle Scholar
  11. [11]
    Gilbarg, D., and Serrin, J., Free Boundaries and Jets in the Theory of Cavitation,J. Math. and Phys., vol. 29 (1950), p. 1.MATHMathSciNetGoogle Scholar
  12. [12]
    Hamel, G., Ein hydrodynamischer Unitätssatz,Proc. Second Int. Cong. App. Mech., Zurich (1926), p. 489.Google Scholar
  13. [13]
    Helmholtz, H., Ueber discontinuierliche Flüssigkeitsbewegung,Monatsber. Berl. Akad., 1868.Google Scholar
  14. [14]
    Jacob, C., Sur la détermination des fonctions harmoniques par certaines conditions aux limites,Mathematica, vol. 11 (1935), p. 150.Google Scholar
  15. [15]
    Von Karman, T., The Engineer Grapples with Non-Linear Problems, (expository article),Bull. Amer. Math. Soc., vol. 46, (1940) p. 745.Google Scholar
  16. [16]
    Kirchhoff, G., Zur Theorie freier Flüssigkeitsstrahlen,J. f. Reine u. Angew. Math., vol. 70, (1869) p. 289.Google Scholar
  17. [17]
    Kravtchenko, J., Sur le problème de représentation conforme d'Helmholtz,J. de Math., vol. 20, (1941), p. 35.MathSciNetGoogle Scholar
  18. [18]
    Kravtchenko, J., Sur l'existence des solutions du problème de représentation conforme de Helmholtz,Ann. Ec. Norm., vol. 62 (1945), pp. 233, and vol. 63 (1946), p. 161.MATHMathSciNetGoogle Scholar
  19. [19]
    Lavrentiev, M., On certain properties of univalent functions and their application to wake theory (in Russian),Math. Sbornik, vol. 46 (1938), p. 331.Google Scholar
  20. [20]
    Lebesgue, H., Sur le problème de Dirichlet,Rend. Circ. Mat. Pal., vol. 24 (1907), p. 371 (exp. pp. 386–388).CrossRefMATHGoogle Scholar
  21. [21]
    Leray, J., Les Problèmes de représentation conforme de Helmholtz,Comm. Math. Helv., vol. 8 (1935-6), p. 149 and p. 250.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Leray, J., Sur la validité des solutions du problème de la prone, Volume du Jubilé de M. M. Brillouin (1935), p. 246.Google Scholar
  23. [23]
    Leray, J., and Schauder, J., Topologie et équations fonctionnelles,Ann. Ec. Norm. Sup., vol. 51 (1934), p. 45.MATHMathSciNetGoogle Scholar
  24. [24]
    Leray, J., and Weinstein, A., Sur un problème de représentation conforme posé par la théorie de Helmholtz,Comptes Rendus, Paris, vol. 198 (1934), p. 430.MATHGoogle Scholar
  25. [25]
    Levi-Civita, T., Sulla Contrazione delle Vene Liquide,Atti Reale Ven. di Sci., vol. 44 (1905), p. 1465.Google Scholar
  26. [26]
    Levi-Civita, T., Scie e leggi di resistenza,Rend. Circ. Mat. Pal., vol. 23 (1907), p. 1.MATHGoogle Scholar
  27. [27]
    Newton, I., Principia, book II, proposition 36.Google Scholar
  28. [28]
    Riabouchinsky, D., Sur un problème de variation,Comptes Rendus, (Paris), vol. 185 (1927), p. 840.MATHGoogle Scholar
  29. [29]
    Serrin, J., Existence Theorem for some Hydrodynamical Free Boundary Problems,J. Rat. Mech. and Anal., vol. 1 (1952), p. 1.MathSciNetGoogle Scholar
  30. [30]
    Serrin, J., Uniqueness Theorems for Two Free Boundary Problems,Amer. J. Math., vol. 74 (1952), p. 492.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Serrin, J., On Plane and Axially Symmetric Free Boundary Problems,J. Rat. Mech. and Anal., vol. 2 (1953), p. 563.MathSciNetGoogle Scholar
  32. [32]
    Shiffman, M., On Free Boundaries of an Ideal Fluid I,Comm. Pure and App. Math. vol. 1 (1948), p. 89.CrossRefMathSciNetGoogle Scholar
  33. [33]
    Shiffman, M., On Free Boundaries of an Ideal Fluid II,Comm. Pure and App. Math., vol. 1 (1949), p. 1.CrossRefMathSciNetGoogle Scholar
  34. [34]
    Titschmarsh, E. C., The Theory of Functions, Oxford Univ. Press, 2nd Edit. (1939).Google Scholar
  35. [35]
    Villat, H., Sur la Résistance des Fluides,Ann. Ec. Norm. sup., vol. 28, (1911), p. 203.MathSciNetGoogle Scholar
  36. [36]
    Villat, H., Aperçus Théoriques sur la résistance des fluides, Collection Scientia, Paris (1920).MATHGoogle Scholar
  37. [37]
    Villat, H., Mécanique des Fluides, 2nd ed., Paris (1938).Google Scholar
  38. [38]
    Weinstein, A., Ein hydrodynamischer Unitätssatz,Mat. Zeit., vol. 19, (1924), p. 265.CrossRefMathSciNetGoogle Scholar
  39. [39]
    Weinstein, A., Sur le théorème d'existence des jets fluides,Rend. d. R. Acc. Lincei. (1927), p. 157. See also an earlier note, ibid. (1926), p. 119.Google Scholar
  40. [40]
    Weinstein, A., Zur theorie der Flüssigkeitsstrahlen,Math. Zeit., vol. 31, (1929), p. 424.CrossRefMathSciNetMATHGoogle Scholar
  41. [41]
    Weinstein, A., Non-linear problems in the theory of fluid motion with free boundaries (expository article),Proc. First Symp. Appl. math., Amer. Math. Soc. (1949).Google Scholar
  42. [42]
    Weyl, H., Strahlbildung, nach der Kontinuitätsmethode behandelt,Nach. Ges. Wiss., Goettingen, (1927), p. 227.Google Scholar

Copyright information

© Journal d’Analyse Mathématique (B. A. Amirá) 1956

Authors and Affiliations

  • Robert Finn
    • 1
    • 2
  1. 1.Los AngelesUSA
  2. 2.Applied Mathematics and Statistics LaboratoryStanford UniversityStanford

Personalised recommendations