Skip to main content
Log in

Hemoabzymes different strategies for obtaining artificial hemoproteins based on antibodies

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Besides existing models of chemical or biotechnological origin for hemoproteins like peroxidases and cytochromes P450, catalytic antibod ies (Abs) with a metalloporphyrin cofactor represent a promising alter native route to catalysts tailored for selective oxidation reactions. A brief overview of the literature shows that, until now, the first strategy for obtaining such artificial hemoproteins has been to produce antipor phyrin Abs, raised against various free-base, N-substituted, Sn-,Pd-,or Fe-porphyrins. Four of them exhibited, in the presence of the corre sponding Fe-porphyrin cofactor, a significant peroxidase activity, with kcat/Km values of 102 to 5 × 103/M/s. This value remained low when com pared to that of peroxidases, probably because neither a proximal ligand of the Fe, nor amino acid residues participating in the catalysis of the heterolytic cleavage of the O—O bond of H2O2, have been induced in those Abs. This strategy has been shown to be insufficient for the elabo ration of effective models of cytochromes P450, because only one set of Abs, raised againstmeso-tetrakis(para-carboxyvinylphenyl)porphyrin, was reported to catalyze the nonstereoselective oxidation of styrene by iodosyl benzene using a Mn-porphyrin cofactor, and attempts to gener ate Abs having binding sites for both the substrate and the metallopor phyrin cofactor, using as a hapten a porphyrin covalently linked to the substrate, were not successful. A second strategy is then proposed, which involves the chemical labeling of antisubstrate Abs with a metallopor phyrin. As an example, preliminary results are presented on the covalent linkage of an Fe-porphyrin to an antiestradiol Ab, in order to obtain semisynthetic catalytic Abs able to catalyze the selective oxidation of steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mansuy, D. and Battioni, P. (1994), inMetalloporphyrins in Catalytic Oxidations, Sheldon, R. A., ed., Marcel Dekker, New York pp. 99–132.

    Google Scholar 

  2. Antonini, E. and Brunori, M. (1971), inHemoglobin and Myoglobin in their Reactions with Ligands, Neuberger, A. and Tatum, E. L., eds., North Holland, Amsterdam, London.

    Google Scholar 

  3. Ortiz de Montellano, P. R. (1995),Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd en., Plenum, New York, London.

    Google Scholar 

  4. Everse, J., Everse, K. E., and Grisham, M. B. (1991),Peroxidases in Chemistry and Biology, vol. 2, CRC, Boca Raton.

    Google Scholar 

  5. Poulos, T. L. (1996),J. Biol. Inorg. Chem. 1, 356–359.

    Article  CAS  Google Scholar 

  6. Momenteau, M. and Reed, C. A. (1994)Chem. Rev. 94, 659–698.

    Article  CAS  Google Scholar 

  7. Mansuy, D. and Battioni, P. (1989), inActivation and Functionalization of Alkanes, Hill, C. L., ed., Wiley, New York, pp. 195–218.

    Google Scholar 

  8. Mansuy, D., Battioni, P., and Battioni, J. P. (1989),Eur. J. Biochem. 184, 267–285.

    Article  CAS  Google Scholar 

  9. McMurry, T. J. and Groves, J. T. (1986), inCytochrome P450: Structure, Mechanism and Biochemistry, 1st en., Ortiz de Montellano, P. R., ed., Plenum, New York, pp. 1–29.

    Google Scholar 

  10. Meunier, B. (1986),Bull. Soc. Chim. Fr. 4, 578–594.

    Google Scholar 

  11. Bruice, T. C. (1986),Ann. NY Acad. Sci. 471, 83–98.

    Article  CAS  Google Scholar 

  12. Tabushi, I. (1988),Coord. Chem. Rev. 86, 1–42.

    Article  CAS  Google Scholar 

  13. Montanari, F. Banfi, S., and Quici, S. (1989),Pure Appl. Chem. 61, 1631–1636.

    Article  CAS  Google Scholar 

  14. Okamoto, T., Sasaki, K., and Tachibana, M. (1989),Bull. Instit. Chem. Res. Kyoto Univ. 97, 169–195.

    Google Scholar 

  15. Mansuy, D. (1990),Pure Appl. Chem. 62, 741–746.

    Article  CAS  Google Scholar 

  16. Bruice, T. C. (1991),Acc. Chem. Res. 24, 243–249.

    Article  CAS  Google Scholar 

  17. Traylor, T. G. (1991),Pure Appl. Chem. 63, 265–274.

    Article  CAS  Google Scholar 

  18. Meunier, B. (1992),Chem. Rev. 92, 1411–1456.

    Article  CAS  Google Scholar 

  19. Groves, J. T. and Han, Y. Z. (1995), inCytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed., Ortiz de Montellano, P. R., ed., Plenum, New York, pp. 3–48.

    Google Scholar 

  20. Battioni, P., Renaud, J. P., Bartoli, J. F., Reina-Artiles, M., Fort, M., and Mansuy, D. (1988),J. Am. Chem. Soc. 110, 8462–8470.

    Article  CAS  Google Scholar 

  21. Bartoli, J. F., Brigaud, O., Battioni, P., and Mansuy, D. (1991),J. Chem. Soc., Chem. Commun., 440–442.

  22. Lindsay Smith, J. R. (1994), inMetalloporphyrins in Catalytic Oxidations, Sheldon, R. A., ed., Marcel Dekker, New York, pp. 325–368.

    Google Scholar 

  23. Leal, O., Anderson, D. L., Bowman, R. C., Basolo, F., and Burwell, R. L. (1975),J. Am. Chem. Soc. 97, 5125–5129.

    Article  CAS  Google Scholar 

  24. Labat, G. and Meunier, B. (1990),C.R. Acad. Sci. Paris 311, 625–630.

    CAS  Google Scholar 

  25. Cooke, P. R. and Lindsay Smith, J. R. (1992),Tetrahedron Lett. 33, 2737–2740.

    Article  CAS  Google Scholar 

  26. Saito, Y., Satouchi, M., Mifune, M., Tai, T., Odo, J., Tanaka, Y., Chikuma, M., and Tanaka, H. (1987),Bull. Chem. Soc. Jpn. 60, 2227–2230.

    Article  CAS  Google Scholar 

  27. Takahashi, K., Matsushima, A., Saito, Y., and Inada, Y. (1986),Biochem. Biophys. Res. Commun. 138, 283–288.

    Article  CAS  Google Scholar 

  28. Labat, G., Seris, J. L., and Meunier, B. (1990),Angew. Chem., Int. Ed. Engl. 29, 1488–1490.

    Article  Google Scholar 

  29. Barloy, L., Lallier, J. P., Battioni, P., and Mansuy, D. (1992),New J. Chem. 16, 71–80.

    CAS  Google Scholar 

  30. Gonzalez, F. J. (1989),Pharmacol. Rev. 40, 243–288.

    Google Scholar 

  31. Renaud, J. P., Cullin, C., Pompon, D., Beaune, P., and Mansuy, D. (1990),Eur. J. Biochem. 194, 889–896.

    Article  CAS  Google Scholar 

  32. Peyronneau, M. A., Renaud, J. P., Urban, P., Truan, G., Pompon, D., and Mansuy, D. (1992),Eur. J. Biochem. 207, 109–116.

    Article  CAS  Google Scholar 

  33. Pauling, L. (1946),Chem. Eng. News 24, 1375–1377.

    CAS  Google Scholar 

  34. Pauling, L. (1948),Am. Sci. 36, 51–58.

    Google Scholar 

  35. Jenks, W. (1969), inCatalysis in Chemistry and Enzymology; McGraw-Hill, New York, 288–289.

    Google Scholar 

  36. Lerner, R. A., Benkovic, S. J., and Schultz, P. G. (1991),Science 252, 659–667.

    Article  CAS  Google Scholar 

  37. Benkovic, S. J. (1992),Annu. Rev. Biochem. 61, 29–54.

    Article  CAS  Google Scholar 

  38. Thomas, N. R. (1994),Appl. Biochem. Biotech. 47, 345–372.

    CAS  Google Scholar 

  39. Thomas, N. R. (1996),Nat. Prod. Res. 479–511.

  40. Shokat, K. M., Leuman, C. J., Sugasawara, R., Schultz, P. G. (1988),Angew. Chem., Int. Ed. Engl. 27, 1172–1174.

    Article  Google Scholar 

  41. Roberts, V. A., Iverson, B. L., Iverson, S. A., Benkovic, S. J., Lerner, R. A., Getzoff, E. D., and Tainer, J. A. (1990),Proc. Natl. Acad. Sci. USA 87, 6654–6658.

    Article  CAS  Google Scholar 

  42. Wade, W. S., Koh, J. S., Han, N., Hoekstra, D. M., and Lerner, R. A. (1993),J. Am. Chem. Soc. 115, 4449–4456.

    Article  CAS  Google Scholar 

  43. Wade, W. S., Ashley, J. A., Jahangiri, G. K., McElhaney, G., Janda, K. D., and Lerner, R. A. (1993),J. Am. Chem. Soc. 115, 4906–4907.

    Article  CAS  Google Scholar 

  44. Crowder, M. W., Stewart, J. D., Roberts, V. A., Bender, C. J., Tevelrakh, E., Peisach, J., Getzoff, E. D., Gaffney, B. T., and Benkovic, S. J. (1995),J. Am. Chem. Soc. 117, 5627–5634.

    Article  CAS  Google Scholar 

  45. Iverson, B. L. and Lerner, R. A. (1989),Science 243, 1184–1187.

    Article  CAS  Google Scholar 

  46. Marnett, L. J. and Kennedy, T. A. (1995), InCytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed., Ortiz de Montellano, P. R., {eeded.}, Plenum, New York, pp. 49–80.

    Google Scholar 

  47. Schwabacher, A. W., Weinhouse, M. I., Auditor, M. M., and Lerner, R. A. (1989),J. Am. Chem. Soc. 111, 2344–2346.

    Article  CAS  Google Scholar 

  48. Cochran, A. G. and Schultz, P. G. (1990),Science 249, 781–783.

    Article  CAS  Google Scholar 

  49. Cochran, A. G. and Schultz, P. G. (1990),J. Am. Chem. Soc. 112, 9414–9415.

    Article  CAS  Google Scholar 

  50. Keinan, E., Sinha, S. C., Sinha-Bagchi, A., Benory, E., Ghozi, M. C., Eshhar, Z. and Green, B. S. (1990),Pure Appl. Chem. 62, 2013–2019.

    Article  CAS  Google Scholar 

  51. Harada, A., Okamoto, K., and Kamachi, M. (1991),Chem. Lett. 953–956.

  52. Keinan, E., Benory, E., Sinha, S. C., Sinha-Bagchi, A., Eren, D., Eshhar, Z., and Green, B. S. (1992),Inorg. Chem. 31, 5433–5438.

    Article  CAS  Google Scholar 

  53. Savitsky, A. P., Demcheva, M. V., Mantrova, E. Y., and Ponomarev, G. V. (1994),FEBS Lett. 355, 314–316.

    Article  CAS  Google Scholar 

  54. Savitsky, A. P., Nelen, M. I., Yatsmirsky, A. K., Demcheva, M. V., Ponomarev G. V., and Sinikov, I. V. (1994),Appl. Biochem. Biotechn. 47, 317–327.

    CAS  Google Scholar 

  55. Feng, Y., Liu, Z., Gao, G., Gao, S. J., Liu, X. Y., and Yang, T. S. (1995),Ann. NY Acad. Sci. 750, 271–276.

    Article  CAS  Google Scholar 

  56. Takagi, M., Kohda, K., Hamuro, T., Horada, A., Yamaguchi, H., Kamachi, M., and Imanaka, T. (1995),FEBS Lett. 375, 273–276.

    Article  CAS  Google Scholar 

  57. Kawamura-Konishi, Y., Hosomi, N., Neya, S., Sugano, S., Funasaki, N., and Suzuki, H. (1996),J. Biochem. 119, 857–862.

    CAS  Google Scholar 

  58. Kawamura-Konishi, Y., Neya, S., Funasaki, N., and Suzuki, H. (1996),Biochem. Biophys. Res. Commun. 225, 537–544.

    Article  CAS  Google Scholar 

  59. Bakovic, M. and Dunford, H. B. (1993),Biochemistry 32, 833–840.

    Article  CAS  Google Scholar 

  60. Quilez, R., de Lauzon, S., Desfosses, B., Mansuy, D., and Mahy, J. P. (1996),FEBS Lett. 395, 73–76.

    Article  CAS  Google Scholar 

  61. White, R. E. and Coon, M. J. (1980),Annu. Rev. Biochem. 49, 315–356.

    Article  CAS  Google Scholar 

  62. Guengerich, F. P. and McDonald, T. L. (1984),Acc. Chem. Res. 17, 9–16.

    Article  CAS  Google Scholar 

  63. Ruckpaul, K. and Rein, H. (1984),Cytochrome P450, Akademic Verlag, Berlin.

    Google Scholar 

  64. Poulos, T. L., Cupp-Vickery, J., and Li, M. (1995), inCytochrome P450: Structure, Mechanism and Biochemistry, 2nd ed. Ortiz de Montellano, P. R., ed., Plenum, New York, pp. 125–150.

    Google Scholar 

  65. Momenteau, M., Mispelter, J., Loock, B., and Lhoste, J. M. (1985),J. Chem. Soc., Perkin Trans. I, 221–231.

  66. Pollack, S. J., Nakayama, G. R., and Schultz, P. G. (1988),Science 242, 1038–1040.

    Article  CAS  Google Scholar 

  67. Pollack, S. J. and Schultz, P. G. (1989),J. Am. Chem. Soc. 111, 1929–1931.

    Article  CAS  Google Scholar 

  68. Collman, J. P., Gagne, R. R., Reed, C. A., Halbert, T. R., Lang, G., and Robinson, W. T. (1975),J. Am. Chem. Soc. 97, 1427–1439.

    Article  CAS  Google Scholar 

  69. Fleisher, E. B., Pahner, J. M., Srivastava, T. S., and Chatterjee, A. (1971),J. Am. Chem. Soc. 93, 3162–3167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Mahy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahy, JP., Desfosses, B., Lauzon, S.d. et al. Hemoabzymes different strategies for obtaining artificial hemoproteins based on antibodies. Appl Biochem Biotechnol 75, 103–127 (1998). https://doi.org/10.1007/BF02787712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02787712

Index Entries

Navigation