Journal d’Analyse Mathématique

, Volume 21, Issue 1, pp 337–371 | Cite as

Approximations to certain Feynman integrals

  • R. H. Cameron


Half Plane Continuous Derivative Real Positive FEYNMAN Integral Schroedinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Babbitt, A summation procedure for certain Feynman integrals.Journal of Mathematical Physics 4 (1963), pp. 36–41.CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals.Journal of Mathematics and Physics 39 (1960), pp. 126–140.MATHGoogle Scholar
  3. 3.
    —, The Ilstow and Feynman integrals.Journal d'Analyse Mathématique 10 (1962/3), pp. 287–361.CrossRefGoogle Scholar
  4. 4.
    J. Feldman, On the Schroedinger and heat equations for nonnegative potentials.Transactions of the A.M.S. 108 (1963), pp. 251–264.MATHCrossRefGoogle Scholar
  5. 5.
    R. A. Kallman, On using the Ilstow integral to solve a certain partial differential equation. Doctoral dissertation, Univ. of Minn., Dec. 1965.Google Scholar
  6. 6.
    E. Nelson, Feynman integrals and the Schroedinger equation.Journal of Mathematical Physics 5 (1964), pp 332–343MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1968

Authors and Affiliations

  • R. H. Cameron
    • 1
  1. 1.Institute of Technology, School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations