Israel Journal of Mathematics

, Volume 139, Issue 1, pp 157–175 | Cite as

Non-abelian sharp permutationp-groups

  • Clara Franchi


A permutation groupG of finite degreed is called a sharp permutation group of type {k},k a non-negative integer, if every non-identity element ofG hask fixed points and |G|=d−k. We characterize sharp non-abelianp-groups of type {k} for allk.


Normal Subgroup Maximal Subgroup Finite Type Faithful Representation Regular Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Blackburn,On a special class of p-groups, Acta Mathematica100 (1958), 45–92.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Bonmassar and C. M. Scoppola,Normally constrained p-groups, Unione Matematica Italiana. Bollettino2-B (1999), 161–168.MathSciNetGoogle Scholar
  3. [3]
    P. J. Cameron,Permutation Groups, LMS Student Texts 45, Cambridge University Press, Cambridge, 1999.MATHGoogle Scholar
  4. [4]
    C. Franchi,On permutation groups of finite type, European Journal of Combinatorics22 (2001), 821–837.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Franchi,Abelian sharp permutation groups, Journal of Algebra, to appear.Google Scholar
  6. [6]
    D. R. Hughes,Partial difference sets, American Journal of Mathematics78 (1956), 650–677.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. I. Khukhro,Nilpotent Groups and their Automorphisms, W. de Gruyter, Berlin, New York, 1993.MATHGoogle Scholar
  8. [8]
    R. Schmidt,Subgroup Lattices of Groups, W. de Gruyter, Berlin, New York, 1994.MATHGoogle Scholar

Copyright information

© Hebrew University 2004

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità Cattolica del Sacro CuoreBresciaItaly

Personalised recommendations