Advertisement

International Journal of Pancreatology

, Volume 23, Issue 1, pp 63–70 | Cite as

Effects of high-lipase pancreatin on fecal fat, neutral sterol, bile acid, and short-chain fatty acid excretion in patients with pancreatic insufficiency resulting from chronic pancreatitis

  • Teruo Nakamura
  • Yusuke Tandoh
  • Akinori Terada
  • Naoko Yamada
  • Taku Watanabe
  • Asako Kaji
  • Ken-ichi Imamura
  • Hiroaki Kikuchi
  • Toshihiro Suda
Original Articles

Summary

Conclusions

Steatorrhea was almost completely stopped and malabsorption of neutral sterols and shortchain fatty acids was reduced by treatment of high-lipase pancreatin in Japanese patients with pancreatic insufficiency whose dietary fat consumption is low.

Methods

Fifteen patients with chronic pancreatitis complicated by steatorrhea who consumed an average of 48 g of dietary fats a day were selected as subjects and given 3 g of high-lipase pancreatin (lipase, 379,800 USP U/g), at each meal (total daily dose is 9 g) for a mean duration of 28.5 d. Fecal output and fecal fat neutral sterol, bile acid, and short-chain fatty acid excretion were determined before and after the course of pancreatin therapy.

Results

Pancreatin administration resulted in significant reductions (P<0.01) in fecal output (from 243.2 to 149.1 g), excretion of fecal fat, (from 12.3 to 3.9 g), animal sterols (from 816.3 to 604.6 mg), and shortchain fatty acids (from 52.6 to 18.5 mM). In contrast, no marked changes were recorded in fecal excretion of β-sitosterol (a plant sterol), bile acids, or the hydroxy fatty acid fraction. Fecal fat and short-chain fatty-acid excretion showed strong correlations with fecal output.

Key Words

Fecal fat neutral sterols bile acids short-chain fatty acids pancreatic insufficiency high-lipase pancreatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vuoristo M, Väänänen H, Miettinen TA. Cholesterol malabsorption in pancreatic insufficiency: effects of enzyme substitution.Gastroenterology 1992; 102: 647–655.PubMedGoogle Scholar
  2. 2.
    Wakasugi H, Nakayama K, Abe M, Hara Y, Ibayashi H. Studies on intestinal malabsorption in chronic pancreatitis.Gastroenterol Jap 1976; 11: 374–379.Google Scholar
  3. 3.
    Nakamura T, Takebe K, Kudoh K, Ishii M, Imamura K, Kikuchi H, Kasai F, Tandoh Y, Yamada N, Arai Y, Terada A, Machida K. Steatorrhea in Japanese patients with chronic pancreatitis.J Gastroenterol 1995; 30: 79–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Nakamura T, Imamura K, Takebe K, Terada A, Arai Y, Tandoh Y, Yamada N, Ishii M, Machida K, Suda T, Correlation between pancreatic endocrine and exocrine function and characteristics of pancreatic endocrine function in patients with diabetes mellitus owing to chronic pancreatitis.Int J Pancreatol 1996; 20: 169–175.PubMedGoogle Scholar
  5. 5.
    Nakamura T, Takebe K, Terada A, Kudoh K, Yamada N, Arai Y, Kikuchi H. Short-chain carboxylic acid in the feces in patients with pancreatic insufficiency.Acta Gastroenterol Belg 1993; 56: 326–331.PubMedGoogle Scholar
  6. 6.
    Nakamura T, Takebe K, Imamura K, Tando Y, Yamada N, Arai Y, Terada A, Ishii M, Kikuchi H, Suda T. Fatsoluble vitamins in patients with chronic pancreatitis (pancreatic insufficiency).Acta Gastroenterol Belg 1996; 59: 10–14.PubMedGoogle Scholar
  7. 7.
    Nakamura T, Takebe K, Kudoh K, Ishii M, Imamura K, Kikuchi H, Kasai F, Tandoh Y, Yamada N, Arai Y, Terada A, Machida K. Nonegative feedback regulation between plasma CCK levels and luminal tryptic activities in patients with pancreatic insufficiency.Int J Pancreatol 1995; 17: 29–35.PubMedGoogle Scholar
  8. 8.
    Kasugai T, Kuno N, Kizu M, Kobayashi S, Hattori K. Endoscopic pancreaticocholangiography. II. The pathological endoscopic pancreatiocholangiogram.Gastroenterology 1972; 63: 227–234.PubMedGoogle Scholar
  9. 9.
    Nakamura T, Kikuchi H, Takebe K, Kudoh K, Terada A, Tandoh Y, Yamada N. Faecal lipid excretion levels in normal Japanese females on an unrestricted diet and a fatrestricted diets measured by simultaneous analysis of faecal lipids.J Int Med Res 1992; 20: 461–466.PubMedGoogle Scholar
  10. 10.
    Child P, Aloe M, Mee D. Separation and quantitation of fatty acids, sterols and bile acids in feces by gas chromatography as the butylester-acetate derivatives.J Chromatog 1987; 415: 13–26.CrossRefGoogle Scholar
  11. 11.
    Nakamura T, Imamura K, Kasai F, Tsushima F, Takebe K. Fecal excretions of hydroxy fatty acid and bile acid in diabetic diarrheal patients.J Diab Comp 1993; 7: 8–11.CrossRefGoogle Scholar
  12. 12.
    Rosenfeed RS, Fukushima DK, Hellman L, Gallagher TF. The transformation of cholesterol into coprostanol.J Biol Chem 1954; 211: 301–311.Google Scholar
  13. 13.
    Roberts IM, Poturich C, Wald A. Utility of faecal fat concentrations as screening test in pancreatic insufficiency.Dig Dis Sci 1986; 31: 1021–1024.PubMedCrossRefGoogle Scholar
  14. 14.
    Bo-Linn GW, Fordtran JS. Fecal fat concentration in patients with steatorrhea.Gastroenterology 1984; 87: 319–322.PubMedGoogle Scholar
  15. 15.
    Lembcke B, Grimm K, Lankisch PG. Raised fecal fat concentration is not a valid indicator of pancreatic steaterrhea.Am J Gastroenterol 1987; 82: 526–531.PubMedGoogle Scholar
  16. 16.
    Nakamura T, Arai Y, Terada A, Kudoh K, Imamura K, Machida K, Kikuchi H, Takebe K. Dietary analysis of Japanese patients with chronic pancreatitis in stable conditions.J Gastroenterol 1994; 29: 756–762.PubMedCrossRefGoogle Scholar
  17. 17.
    Graham DY. Enzyme replacement therapy of exocrine pancreatic insufficiency in man.N Engl J Med 1977; 296: 1314–1317.PubMedCrossRefGoogle Scholar
  18. 18.
    DiMagno EP, Malagelada JR, Go VLW, Moertel CG. Fate of orally ingested enzymes in pancreatic insufficiency: comparison of two dosage schedules.N Engl J Med 1977; 296: 1318–1322.PubMedCrossRefGoogle Scholar
  19. 19.
    Marotta F, O’Keefe SJD, Marks IN, Girdwood A, Young G. Pancreatic enzyme replacement therapy. Importance of gastric acid secretion H2-antagonists, and enteric coating.Dig Dis Sci 1989; 34: 456–461.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakamura T, Takeuchi T. Pancreatic steatorrhea, malabsorption, and nutrition biochemistry: a comparison of Japanese, Europian, and American patients with chronic pancreatitis.Pancreas 1996; 14: 323–333.CrossRefGoogle Scholar
  21. 21.
    Graham DY. Pancreatic enzyme replacement. The effect of antacids or cimetidine.Dig Dis Sci 1982; 27: 485–490.PubMedCrossRefGoogle Scholar
  22. 22.
    Go VLD, Poley R, Hofmann AF, Summerskill WHJ. Disturbances in fat digestion induced by acidic jejunal pH due to gastric hypersecretion in man.Gastroenterology 1970; 58: 638–646.PubMedGoogle Scholar
  23. 23.
    Zentler-Munro PL, Fine DR, Batten JC, Northfield TC. Effect of cimetidine on enzyme inactivation, bile acid precipitation, and lipid solubilization in pancreatic steatorrhea due to cystic fibrosis.Gut 1985; 26: 892–901.PubMedCrossRefGoogle Scholar
  24. 24.
    Salen G, Ahrens EH Jr, Grundy SM. metabolism of β-sitosterol in man.J Clin Invest 1970; 49: 952–967.PubMedCrossRefGoogle Scholar
  25. 25.
    Borgstrom B. Studies on intestinal cholesterol absorption in the human.J Clin Invest 1960; 39: 809–815.PubMedCrossRefGoogle Scholar
  26. 26.
    Hofmann AF, Borgstrom B. Physico-chemical state of lipids in intestinal content during their digestion and absorption.Gastroenterology 1962; 2: 43–50.Google Scholar
  27. 27.
    Zentler-Munro PL, Fitzpatrick WJF, Batten JC, Northfield TC. Effect of intrajejunal acidity on aqueous phase bile acid and lipid concentrations in pancreatic steatorrhea due to cystic fibrosis.Gut 1984; 25: 500–507.PubMedCrossRefGoogle Scholar
  28. 28.
    Regan DT, Malagedala JR, DiMagno EP, Go VLW. Reduced intraluminal bile acid concentrations and fat maldigestion in pancreatic insufficiency: correction by treatment.Gastroenterology 1979; 77: 285–289.PubMedGoogle Scholar
  29. 29.
    Hiele M, Ghoos Y, Rutgeerts P, Vantrappen G. Starch digestion in normal subjects and patients with pancreatic disease, using a 13CO2 breath test.Gastroenterology 1989; 96: 503–509.PubMedGoogle Scholar
  30. 30.
    Rasmussen HS, Holtug K, Mortensen PB. Degradation of amino acids to short-chain fatty acids in humans.Scand J Gastroenterol 1988; 23: 178–182.PubMedCrossRefGoogle Scholar
  31. 31.
    Scheppach W, Fabian C, Sachs M, Kasper H. The effect of starch malabsorption on fecal short-chain fatty acid excretion in man.Scand J Gastroenterol 1988; 23: 755–759.PubMedCrossRefGoogle Scholar
  32. 32.
    Fleming SE, Rodrigues MA. Influence of dietary fiber on fecal excretion of volatile fatty acids by human adults.J Nutr 1983; 113: 1613–1625.PubMedGoogle Scholar
  33. 33.
    Høverstad T, Bjørneklett A. Short-chain fatty acids and bowel functions in man.Scand J Gastroenterol 1984; 19: 1059–1065.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Teruo Nakamura
    • 1
  • Yusuke Tandoh
    • 1
  • Akinori Terada
    • 1
  • Naoko Yamada
    • 1
  • Taku Watanabe
    • 1
  • Asako Kaji
    • 1
  • Ken-ichi Imamura
    • 1
  • Hiroaki Kikuchi
    • 1
  • Toshihiro Suda
    • 1
  1. 1.3rd Department of Internal MedicineHirosaki University School of MedicineHirosakishi, AomoriJapan

Personalised recommendations